Reaction participants Show >> << Hide
- Name help_outline di-trans,nona-cis-dodecaprenyl phosphate Identifier CHEBI:142345 Charge -2 Formula C60H97O4P InChIKeyhelp_outline SESCGLQZDCBQBB-VAWIHWGVSA-L SMILEShelp_outline [O-]P(=O)([O-])OC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC/C=C(\CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\CC\C=C(\CCC=C(C)C)/C)/C)/C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-α-D-galacturonate Identifier CHEBI:57635 Charge -3 Formula C15H19N2O18P2 InChIKeyhelp_outline HDYANYHVCAPMJV-GXNRKQDOSA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@@H]([C@H](O)[C@H](O)[C@H]2O)C([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline β-D-galacturonosyl di-trans,nona-cis-dodecaprenyl phosphate Identifier CHEBI:142217 Charge -2 Formula C66H105O10P InChIKeyhelp_outline KNRKMSRCMYRVRK-MXOBNJFFSA-L SMILEShelp_outline O1[C@@H]([C@H](O)[C@@H]([C@H]([C@@H]1OP(=O)([O-])OC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC/C=C(\CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\C)/CC\C=C(\CC\C=C(\CCC=C(C)C)/C)/C)/C)O)O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:26006 | RHEA:26007 | RHEA:26008 | RHEA:26009 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Publications
-
Dodecaprenyl phosphate-galacturonic acid as a donor substrate for lipopolysaccharide core glycosylation in Rhizobium leguminosarum.
Kanjilal-Kolar S., Raetz C.R.
The lipid A and inner core regions of Rhizobium leguminosarum lipopolysaccharide contain four galacturonic acid (GalA) residues. Two are attached to the outer unit of the 3-deoxy-D-manno-octulosonic acid (Kdo) disaccharide, one to the mannose residue, and one to the 4'-position of lipid A. The enz ... >> More
The lipid A and inner core regions of Rhizobium leguminosarum lipopolysaccharide contain four galacturonic acid (GalA) residues. Two are attached to the outer unit of the 3-deoxy-D-manno-octulosonic acid (Kdo) disaccharide, one to the mannose residue, and one to the 4'-position of lipid A. The enzymes RgtA and RgtB, described in the accompanying article, catalyze GalA transfer to the Kdo residue, whereas RgtC is responsible for modification of the core mannose unit. Heterologous expression of RgtA in Sinorhizhobium meliloti 1021, a strain that normally lacks GalA modifications on its Kdo disaccharide, resulted in detectable GalA transferase activity in isolated membrane preparations, suggesting that the appropriate GalA donor substrate is available in S. meliloti membranes. In contrast, heterologous expression of RgtA in Escherichia coli yielded inactive membranes. However, RgtA activity was detectable in the E. coli system when total lipids from R. leguminosarum 3841 or S. meliloti 1021 were added. We have now purified and characterized dodecaprenyl (C60) phosphate-GalA as a minor novel lipid of R. leguminosarum 3841 and S. meliloti. This substance is stable to mild base hydrolysis and was purified by DEAE-cellulose column chromatography. Its structure was established by a combination of electrospray ionization mass spectrometry and gas-liquid chromatography. Purified dodecaprenyl phosphate-GalA supports the efficient transfer of GalA to Kdo2-1-dephospho-lipid IV(A) by membranes of E. coli cells expressing RgtA, RgtB, and RgtC. The identification of a polyisoprene phosphate-GalA donor substrate suggests that the active site of RgtA faces the periplasmic side of the inner membrane. This work represents the first definitive characterization of a lipid-linked GalA derivative with the proposed structure dodecaprenyl phosphate-beta-D-GalA. << Less
-
Characterization of galacturonosyl transferase genes rgtA, rgtB, rgtC, rgtD, and rgtE responsible for lipopolysaccharide synthesis in nitrogen-fixing endosymbiont Rhizobium leguminosarum: lipopolysaccharide core and lipid galacturonosyl residues confer membrane stability.
Brown D.B., Forsberg L.S., Kannenberg E.L., Carlson R.W.
Rhizobium lipopolysaccharide (LPS) contains four terminally linked galacturonic acid (GalA) residues; one attached to the lipid A and three attached to the core oligosaccharide moiety. Attachment of the GalA residues requires the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA), which is synth ... >> More
Rhizobium lipopolysaccharide (LPS) contains four terminally linked galacturonic acid (GalA) residues; one attached to the lipid A and three attached to the core oligosaccharide moiety. Attachment of the GalA residues requires the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA), which is synthesized by the GalA transferase RgtE reported here. The galacturonosyl transferases RgtA, -B, and -C utilize Dod-P-GalA to attach GalAs on the LPS core region, and RgtD attaches GalA to the lipid A 4' position. As reported here, the functions of the rgtD and rgtE genes were determined via insertion mutagenesis and structural characterization of the mutant lipid A. The rgtE(-) mutant lacked Dod-P-GalA as determined by mass spectrometry of total lipid extracts and the inability of rgtE(-) mutant membranes to provide the substrate for heterologously expressed RgtA activity. In addition, we created single mutations in each of the rgtA, -B, -C, -D, and -E genes to study the biological function of the GalA residues. The structures of the core oligosaccharide region from each of the rgt mutants were elucidated by glycosyl linkage analysis. Each mutant was assayed for its sensitivity to sodium deoxycholate and to the antimicrobial cationic peptide, polymyxin B (PmxB). The rgt mutants were more sensitive than the parent strain to deoxycholate by varying degrees. However, the rgtA, -B, and -C mutants were more resistant to PmxB, whereas the rgtD and E mutants were less resistant in comparison to the parent strain. << Less