Enzymes
UniProtKB help_outline | 1,725 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate Identifier CHEBI:58861 Charge -2 Formula C6H9O8P InChIKeyhelp_outline XBUYIELOLLPBOC-PHDIDXHHSA-L SMILEShelp_outline CC(=O)[C@@H](O)[C@H](O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-aspartate 4-semialdehyde Identifier CHEBI:537519 Charge 0 Formula C4H7NO3 InChIKeyhelp_outline HOSWPDPVFBCLSY-VKHMYHEASA-N SMILEShelp_outline [H]C(=O)C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2,3-dioxopropyl phosphate Identifier CHEBI:58860 (Beilstein: 1874111) help_outline Charge -2 Formula C3H3O6P InChIKeyhelp_outline NZAAQWRNVFEKME-UHFFFAOYSA-L SMILEShelp_outline [H]C(=O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-amino-2,3,7-trideoxy-D-lyxo-hept-6-ulosonate Identifier CHEBI:58859 Charge 0 Formula C7H13NO5 InChIKeyhelp_outline IFMHGOADXGYWMO-KVQBGUIXSA-N SMILEShelp_outline CC(=O)[C@@H](O)[C@H](O)C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25952 | RHEA:25953 | RHEA:25954 | RHEA:25955 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
L-aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii.
White R.H.
No orthologs are present in the genomes of the archaea encoding genes for the first two steps in the biosynthesis of the aromatic amino acids leading to 3-dehydroquinate (DHQ). The absence of these genes prompted me to examine the nature of the reactions involved in the archaeal pathway leading to ... >> More
No orthologs are present in the genomes of the archaea encoding genes for the first two steps in the biosynthesis of the aromatic amino acids leading to 3-dehydroquinate (DHQ). The absence of these genes prompted me to examine the nature of the reactions involved in the archaeal pathway leading to DHQ in Methanocaldococcus jannaschii. Here I report that 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde are precursors to DHQ. The sugar, which is derived from glucose 6-P, supplies a "hydroxyacetone" fragment, which, via a transaldolase reaction, undergoes an aldol condensation with the l-aspartate semialdehyde to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid. Despite the fact that both hydroxyacetone and hydroxyacetone-P were measured in the cell extracts and confirmed to arise from glucose 6-P, neither compound was found to serve as a precursor to DHQ. This amino sugar then undergoes a NAD dependent oxidative deamination to produce 3,7-dideoxy-d-threo-hept-2,6-diulosonic acid which cyclizes to 3-dehydroquinate. The protein product of the M. jannaschii MJ0400 gene catalyzes the transaldolase reaction and the protein product of the MJ1249 gene catalyzes the oxidative deamination and the cyclization reactions. The DHQ is readily converted into dehydroshikimate and shikimate in M. jannaschii cell extracts, consistent with the remaining steps and genes in the pathway being the same as in the established shikimate pathway. << Less
Biochemistry 43:7618-7627(2004) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Structure of 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase, a catalyst in the archaeal pathway for the biosynthesis of aromatic amino acids.
Morar M., White R.H., Ealick S.E.
Genes responsible for the generation of 3-dehydroquinate (DHQ), an early metabolite in the established shikimic pathway of aromatic amino acid biosynthesis, are absent in most euryarchaeotes. Alternative gene products, Mj0400 and Mj1249, have been identified in Methanocaldococcus jannaschii as the ... >> More
Genes responsible for the generation of 3-dehydroquinate (DHQ), an early metabolite in the established shikimic pathway of aromatic amino acid biosynthesis, are absent in most euryarchaeotes. Alternative gene products, Mj0400 and Mj1249, have been identified in Methanocaldococcus jannaschii as the enzymes involved in the synthesis of DHQ. 2-Amino-3,7-dideoxy-d-threo-hept-6-ulosonic acid (ADH) synthase, the product of the Mj0400 gene, catalyzes a transaldol reaction between 6-deoxy-5-ketofructose 1-phosphate and l-aspartate semialdehyde to yield ADH. Dehydroquinate synthase II, the product of the Mj1249 gene, then catalyzes deamination and cyclization of ADH, resulting in DHQ, which is fed into the canonical pathway. Three crystal structures of ADH synthase were determined in this work: a complex with a substrate analogue, fructose 1,6-bisphosphate, a complex with dihydroxyacetone phosphate (DHAP), thought to be a product of fructose 1-phosphate cleavage, and a native structure containing copurified ligands, modeled as DHAP and glycerol. On the basis of the structural analysis and comparison of the enzyme with related aldolases, ADH synthase is classified as a new member of the class I aldolase superfamily. The description of the active site allows for the identification and characterization of possible catalytic residues, Lys184, which is responsible for formation of the Schiff base intermediate, and Asp33 and Tyr153, which are candidates for the general acid/base catalysis. << Less
-
MJ0400 from Methanocaldococcus jannaschii exhibits fructose-1,6-bisphosphate aldolase activity.
Samland A.K., Wang M., Sprenger G.A.
The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His(6) from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a V(max) of 33 mU mg(-1 ... >> More
The central carbon metabolism is well investigated in bacteria, but this is not the case for archaea. MJ0400-His(6) from Methanocaldococcus jannaschii catalyzes the cleavage of fructose-1,6-bisphosphate (FBP) to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate with a V(max) of 33 mU mg(-1) and a K(m) of 430 microM at 50 degrees C. MJ0400-His(6) is inhibited competitively by erythrose-4-phosphate with a K(i) of 380 microM and displays heat stability with a half-life of c. 1 h at 100 degrees C. Hence, MJ0400 is the second gene encoding for an FBP aldolase in M. jannaschii. Previously, MJ0400 was shown to act as an 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonic acid synthase. This indicates that MJ0400 is involved in both the carbon metabolism and the shikimate pathway in M. jannaschii. << Less
FEMS Microbiol. Lett. 281:36-41(2008) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.