Reaction participants Show >> << Hide
- Name help_outline 2-dehydro-3-deoxy-L-rhamnonate Identifier CHEBI:58371 Charge -1 Formula C6H9O5 InChIKeyhelp_outline FRIWJYNKZPJVRL-IUYQGCFVSA-M SMILEShelp_outline C[C@H](O)[C@H](O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-lactaldehyde Identifier CHEBI:18041 (CAS: 3913-64-2,598-35-6) help_outline Charge 0 Formula C3H6O2 InChIKeyhelp_outline BSABBBMNWQWLLU-VKHMYHEASA-N SMILEShelp_outline [H]C(=O)[C@H](C)O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25784 | RHEA:25785 | RHEA:25786 | RHEA:25787 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Evolution of enzymatic activities in the enolase superfamily: L-rhamnonate dehydratase.
Rakus J.F., Fedorov A.A., Fedorov E.V., Glasner M.E., Hubbard B.K., Delli J.D., Babbitt P.C., Almo S.C., Gerlt J.A.
The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous subst ... >> More
The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the "best" kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg (2+); the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonate (obtained by reduction of the product with NaBH 4). Like other members of the enolase superfamily, RhamD contains an N-terminal alpha + beta capping domain and a C-terminal (beta/alpha) 7beta-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining "20s loop" in the capping domain is extended in length and the "50s loop" is truncated. The ligands for the Mg (2+) are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth beta-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth beta-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg (2+)-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to carbon-3 to replace the 3-OH group with retention of configuration. << Less
Biochemistry 47:9944-9954(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12.
Rea D., Hovington R., Rakus J.F., Gerlt J.A., Fueloep V., Bugg T.D.H., Roper D.I.
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU ... >> More
One of the major challenges in the postgenomic era is the functional assignment of proteins using sequence- and structure-based predictive methods coupled with experimental validation. We have used these approaches to investigate the structure and function of the Escherichia coli K-12 protein YfaU, annotated as a putative 4-hydroxy-2-ketoheptane-1,7-dioate aldolase (HpcH) in the sequence databases. HpcH is the final enzyme in the degradation pathway of the aromatic compound homoprotocatechuate. We have determined the crystal structure of apo-YfaU and the Mg (2+)-pyruvate product complex. Despite greater sequence and structural similarity to HpcH, genomic context suggests YfaU is instead a 2-keto-3-deoxy sugar aldolase like the homologous 2-dehydro-3-deoxygalactarate aldolase (DDGA). Enzyme kinetic measurements show activity with the probable physiological substrate 2-keto-3-deoxy-l-rhamnonate, supporting the functional assignment, as well as the structurally similar 2-keto-3-deoxy- l-mannonate and 2-keto-3-deoxy-l-lyxonate (see accompanying paper: Rakus, J. F., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Hubbard, B. K., Delli, J. D., Babbitt, P. C., Almo, S. C., and Gerlt, J. A. (2008) Biochemistry 47, 9944-9954). YfaU has similar activity toward the HpcH substrate 4-hydroxy-2-ketoheptane-1,7-dioate and synthetic substrates 4-hydroxy-2-ketopentanoic acid and 4-hydroxy-2-ketohexanoic acid. This indicates a relaxed substrate specificity that complicates the functional assignment of members of this enzyme superfamily. Crystal structures suggest these enzymes use an Asp-His intersubunit dyad to activate a metal-bound water or hydroxide for proton transfer during catalysis. << Less
-
Characterization of l-2-keto-3-deoxyfuconate aldolases in a nonphosphorylating l-fucose metabolism pathway in anaerobic bacteria.
Watanabe S.
The genetic context in bacterial genomes and screening for potential substrates can help identify the biochemical functions of bacterial enzymes. The Gram-negative, strictly anaerobic bacterium <i>Veillonella ratti</i> possesses a gene cluster that appears to be related to l-fucose metabolism and ... >> More
The genetic context in bacterial genomes and screening for potential substrates can help identify the biochemical functions of bacterial enzymes. The Gram-negative, strictly anaerobic bacterium <i>Veillonella ratti</i> possesses a gene cluster that appears to be related to l-fucose metabolism and contains a putative dihydrodipicolinate synthase/<i>N</i>-acetylneuraminate lyase protein (FucH). Here, screening of a library of 2-keto-3-deoxysugar acids with this protein and biochemical characterization of neighboring genes revealed that this gene cluster encodes enzymes in a previously unknown "route I" nonphosphorylating l-fucose pathway. Previous studies of other aldolases in the dihydrodipicolinate synthase/<i>N</i>-acetylneuraminate lyase protein superfamily used only limited numbers of compounds, and the approach reported here enabled elucidation of the substrate specificities and stereochemical selectivities of these aldolases and comparison of them with those of FucH. According to the aldol cleavage reaction, the aldolases were specific for (<i>R</i>)- and (<i>S</i>)-stereospecific groups at the C4 position of 2-keto-3-deoxysugar acid but had no structural specificity or preference of methyl groups at the C5 and C6 positions, respectively. This categorization corresponded to the (<i>Re</i>)- or (<i>Si</i>)-facial selectivity of the pyruvate enamine on the (glycer)aldehyde carbonyl in the aldol-condensation reaction. These properties are commonly determined by whether a serine or threonine residue is positioned at the equivalent position close to the active site(s), and site-directed mutagenesis markedly modified C4-OH preference and selective formation of a diastereomer. I propose that substrate specificity of 2-keto-3-deoxysugar acid aldolases was convergently acquired during evolution and report the discovery of another l-2-keto-3-deoxyfuconate aldolase involved in the same nonphosphorylating l-fucose pathway in <i>Campylobacter jejuni</i>. << Less
J Biol Chem 295:1338-1349(2020) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.