Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline myricetin Identifier CHEBI:58395 (Beilstein: 3710398) help_outline Charge -1 Formula C15H9O8 InChIKeyhelp_outline IKMDFBPHZNJCSN-UHFFFAOYSA-M SMILEShelp_outline Oc1cc(O)c2c(c1)oc(-c1cc(O)c(O)c(O)c1)c([O-])c2=O 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline laricitrin Identifier CHEBI:60006 Charge -1 Formula C16H11O8 InChIKeyhelp_outline CFYMYCCYMJIYAB-UHFFFAOYSA-M SMILEShelp_outline COc1cc(cc(O)c1O)-c1oc2cc(O)cc(O)c2c(=O)c1[O-] 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25629 | RHEA:25630 | RHEA:25631 | RHEA:25632 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations.
Cacace S., Schroder G., Wehinger E., Strack D., Schmidt J., Schroder J.
Protein extracts from dark-grown cell suspension cultures of Catharanthus roseus (Madagascar periwinkle) contained several O-methyltransferase (OMT) activities, including the 16-hydroxytabersonine O-methyltransferase (16HT-OMT) in indole alkaloid biosynthesis. This enzyme was enriched through seve ... >> More
Protein extracts from dark-grown cell suspension cultures of Catharanthus roseus (Madagascar periwinkle) contained several O-methyltransferase (OMT) activities, including the 16-hydroxytabersonine O-methyltransferase (16HT-OMT) in indole alkaloid biosynthesis. This enzyme was enriched through several purification steps, including affinity chromatography on adenosine agarose. SDS-PAGE of the purified protein preparation revealed a protein band at the size expected for plant OMTs (38-43 kDa). Mass spectrometry indicated two dominant protein species of similar mass in this band, and sequences of tryptic peptides showed similarities to known OMTs. Homology-based RT-PCR identified cDNAs for four new OMTs. Two of these cDNAs (CrOMT2 and CrOMT4) encoded the proteins dominant in the preparation enriched for 16HT-OMT. The proteins were closely related (73% identity), but both shared only 48-53% identity with the closest relatives found in the public databases. The enzyme functions were investigated with purified recombinant proteins after cDNA expression in Escherichia coli. Unexpectedly, both proteins had no detectable 16HT-OMT activity, and CrOMT4 was inactive with all substrates investigated. CrOMT2 was identified as a flavonoid OMT that was expressed in dark-grown cell cultures and copurified with 16HT-OMT. It represented a new type of OMT that performs two sequential methylations at the 3'- and 5'-positions of the B-ring in myricetin (flavonol) and dihydromyricetin (dihydroflavonol). The resulting methylation pattern is characteristic for C. roseus flavonol glycosides and anthocyanins, and it is proposed that CrOMT2 is involved in their biosynthesis. << Less
Phytochemistry 62:127-137(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
A novel cation-dependent o-methyltransferase involved in anthocyanin methylation in grapevine.
Hugueney P., Provenzano S., Verries C., Ferrandino A., Meudec E., Batelli G., Merdinoglu D., Cheynier V., Schubert A., Ageorges A.
Anthocyanins are major pigments in colored grape (Vitis vinifera) berries, and most of them are monomethoxylated or dimethoxylated. We report here the functional characterization of an anthocyanin O-methyltransferase (AOMT) from grapevine. The expression pattern in two cultivars with different ant ... >> More
Anthocyanins are major pigments in colored grape (Vitis vinifera) berries, and most of them are monomethoxylated or dimethoxylated. We report here the functional characterization of an anthocyanin O-methyltransferase (AOMT) from grapevine. The expression pattern in two cultivars with different anthocyanin methylation profiles (Syrah and Nebbiolo) showed a peak at start ripening (véraison), when the concentrations of all methylated anthocyanins begin to increase. The purified recombinant AOMT protein was active on both anthocyanins and flavonols in vitro, with K(m) in the micromolar range, and was dependent on divalent cations for activity. AOMT showed a preference for 3',5' methylation when a 3',4',5' hydroxylated anthocyanin substrate was tested. In order to assess its in planta activity, we performed transient expression of AOMT in tobacco (Nicotiana benthamiana) leaves expressing the Production of Anthocyanin Pigment1 (PAP1) transcription factor from Arabidopsis (Arabidopsis thaliana). PAP1 expression in leaves induced the accumulation of the nonmethylated anthocyanin delphinidin 3-rutinoside. The coexpression of PAP1 and AOMT resulted in an accumulation of malvidin 3-rutinoside. We also showed that AOMT localized exclusively in the cytoplasm of tobacco leaf cells. These results demonstrate the ability of this enzyme to methylate anthocyanins both in vitro and in vivo, indicating that AOMT plays a major role in anthocyanin biosynthesis in grape berries. << Less
Plant Physiol. 150:2057-2070(2009) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3'/5'- and 7/4'-myricetin O-methyltransferases.
Schmidt A., Li C., Shi F., Jones A.D., Pichersky E.
Flavonoids are a class of metabolites found in many plant species. They have been reported to serve several physiological roles, such as in defense against herbivores and pathogens and in protection against harmful ultraviolet radiation. They also serve as precursors of pigment compounds found in ... >> More
Flavonoids are a class of metabolites found in many plant species. They have been reported to serve several physiological roles, such as in defense against herbivores and pathogens and in protection against harmful ultraviolet radiation. They also serve as precursors of pigment compounds found in flowers, leaves, and seeds. Highly methylated, nonglycosylated derivatives of the flavonoid myricetin flavonoid, have been previously reported from a variety of plants, but O-methyltransferases responsible for their synthesis have not yet been identified. Here, we show that secreting glandular trichomes (designated types 1 and 4) and storage glandular trichomes (type 6) on the leaf surface of wild tomato (Solanum habrochaites accession LA1777) plants contain 3,7,3'-trimethyl myricetin, 3,7,3',5'-tetramethyl myricetin, and 3,7,3',4',5'-pentamethyl myricetin, with gland types 1 and 4 containing severalfold more of these compounds than type 6 glands and with the tetramethylated compound predominating in all three gland types. We have also identified transcripts of two genes expressed in the glandular trichomes and showed that they encode enzymes capable of methylating myricetin at the 3' and 5' and the 7 and 4' positions, respectively. Both genes are preferentially expressed in secreting glandular trichome types 1 and 4 and to a lesser degree in storage trichome type 6, and the levels of the proteins they encode are correspondingly higher in types 1 and 4 glands compared with type 6 glands. << Less
Plant Physiol. 155:1999-2009(2011) [PubMed] [EuropePMC]
This publication is cited by 13 other entries.