Enzymes
UniProtKB help_outline | 1 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline terpentedienyl diphosphate Identifier CHEBI:58821 Charge -3 Formula C20H33O7P2 InChIKeyhelp_outline LKJRXYMJDDAXEN-LENLPTBCSA-K SMILEShelp_outline [H][C@@]12CCC=C(C)[C@@]1(C)CC[C@@H](C)[C@@]2(C)CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline terpentetriene Identifier CHEBI:50302 Charge 0 Formula C20H32 InChIKeyhelp_outline DTIVNEHSCKVQIB-IYWMVGAKSA-N SMILEShelp_outline [H][C@@]12CCC=C(C)[C@@]1(C)CC[C@@H](C)[C@@]2(C)CCC(=C)C=C 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25617 | RHEA:25618 | RHEA:25619 | RHEA:25620 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A new approach for the investigation of isoprenoid biosynthesis featuring pathway switching, deuterium hyperlabeling, and 1H NMR spectroscopy. The reaction mechanism of a novel streptomyces diterpene cyclase.
Eguchi T., Dekishima Y., Hamano Y., Dairi T., Seto H., Kakinuma K.
Recent methodology for the investigation of isoprenoid biosynthesis featuring pathway switching and hyperdeuteration has shown significant advantages in elucidating the reaction mechanism of a novel Streptomyces diterpene cyclase with use of precise atom-level analysis. Insight into the cyclizatio ... >> More
Recent methodology for the investigation of isoprenoid biosynthesis featuring pathway switching and hyperdeuteration has shown significant advantages in elucidating the reaction mechanism of a novel Streptomyces diterpene cyclase with use of precise atom-level analysis. Insight into the cyclization mechanism involved in the conversion of geranylgeranyl diphosphate (GGPP) into a clerodane hydrocarbon terpentetriene was obtained by heterologous expression in doubly engineered Streptomyces lividans of a diterpene cyclase gene derived from Streptomyces griseolosporeus, a producer of an unique diterpenoid cytotoxic antibiotic terpentecin, and by in vivo labeling with mevalonate-d(9). The cyclization involved electrophilic protonation, cationic ring closure, Wagner-Meerwein-type rearrangements, and deprotonation. A key feature was that the labeled metabolite as a mixture of predominantly deuterated mosaic molecules provided sufficient information that close analysis of the labeling pattern for each individual isoprene unit was achieved primarily by (1)H NMR spectroscopy. The cyclization of GGPP into the clerodane skeleton catalyzed by the cyclase appears to involve Si-face specific protonation, intermediates with A/B chair-boat conformation, and specific methyl and hydride migrations to give an intermediary C-4 carbocation. Subsequent collapse of the cation through specific removal of the initiating proton and final elimination of diphosphate gives rise to the terpentetriene hydrocarbon. << Less
J Org Chem 68:5433-5438(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, terpentecin.
Hamano Y., Kuzuyama T., Itoh N., Furihata K., Seto H., Dairi T.
Eubacterial diterpene cyclase genes had previously been cloned from a diterpenoid antibiotic terpentecin producer (Dairi, T., Hamano, Y., Kuzuyama, T., Itoh, N., Furihata, K., and Seto, H. (2001) J. Bacteriol. 183, 6085-6094). Their products, open reading frame 11 (ORF11) and ORF12, were essential ... >> More
Eubacterial diterpene cyclase genes had previously been cloned from a diterpenoid antibiotic terpentecin producer (Dairi, T., Hamano, Y., Kuzuyama, T., Itoh, N., Furihata, K., and Seto, H. (2001) J. Bacteriol. 183, 6085-6094). Their products, open reading frame 11 (ORF11) and ORF12, were essential for the conversion of geranylgeranyl diphosphate (GGDP) into terpentetriene (TTE) that had the same basic skeleton as terpentecin. In this study, functional analyses of these two enzymes were performed by using purified recombinant enzymes. The ORF11 product converted GGDP into a cyclized intermediate, terpentedienol diphosphate (TDP), which was then transformed into TTE by the ORF12 product. Interestingly, the ORF12 product directly catalyzed the conversion of GGDP into three olefinic compounds. Moreover, the ORF12 product utilized farnesyl diphosphate as a substrate to give three olefinic compounds, which had the same structures as those formed from GGDP with the exception of the chain lengths. These results suggested that the ORF11 product with a DXDD motif converted GGDP into TDP by a protonation-initiated cyclization and that the ORF12 product with a DDXXD motif completed the transformation of TDP to the olefin, terpentetriene by an ionization-initiated reaction followed by deprotonation. The kinetics of the ORF12 product indicated that the affinity for TDP and GGDP were higher than that of farnesyl diphosphate and that the relative activity of the reaction converting TDP into TTE was highest among the reactions using TDP, GGDP, or farnesyl diphosphate as the substrate. These results suggested that an actual reaction catalyzed by the ORF12 was the conversion of TDP into TTE in vivo. << Less
J. Biol. Chem. 277:37098-37104(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Eubacterial diterpene cyclase genes essential for production of the isoprenoid antibiotic terpentecin.
Dairi T., Hamano Y., Kuzuyama T., Itoh N., Furihata K., Seto H.
A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibio ... >> More
A gene cluster containing the mevalonate pathway genes (open reading frame 2 [ORF2] to ORF7) for the formation of isopentenyl diphosphate and a geranylgeranyl diphosphate (GGDP) synthase gene (ORF1) had previously been cloned from Streptomyces griseolosporeus strain MF730-N6, a diterpenoid antibiotic, terpentecin (TP) producer (Y. Hamano, T. Dairi, M. Yamamoto, T. Kawasaki, K Kaneda, T. Kuzuyama, N. Itoh, and H. Seto, Biosci. Biotech. Biochem. 65:1627-1635, 2001). Sequence analysis in the upstream region of the cluster revealed seven new ORFs, ORF8 to ORF14, which were suggested to encode TP biosynthetic genes. We constructed two mutants, in which ORF11 and ORF12, which encode a protein showing similarities to eukaryotic diterpene cyclases (DCs) and a eubacterial pentalenene synthase, respectively, were inactivated by gene disruptions. The mutants produced no TP, confirming that these cyclase genes are essential for the production of TP. The two cyclase genes were also expressed in Streptomyces lividans together with the GGDP synthase gene under the control of the ermE* constitutive promoter. The transformant produced a novel cyclic diterpenoid, ent-clerod-3,13(16),14-triene (terpentetriene), which has the same basic skeleton as TP. The two enzymes, each of which was overproduced in Escherichia coli and purified to homogeneity, converted GGDP into terpentetriene. To the best of our knowledge, this is the first report of a eubacterial DC. << Less
J. Bacteriol. 183:6085-6094(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.