Enzymes
| UniProtKB help_outline | 6 proteins |
| Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 4-methylsulfanyl-2-oxobutanoate Identifier CHEBI:16723 (Beilstein: 3662236) help_outline Charge -1 Formula C5H7O3S InChIKeyhelp_outline SXFSQZDSUWACKX-UHFFFAOYSA-M SMILEShelp_outline CSCCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 19 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 381 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,485 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-(2-methylsulfanyl)ethylmalate Identifier CHEBI:58816 Charge -2 Formula C7H10O5S InChIKeyhelp_outline FZNWJRXTACKOPU-UHFFFAOYSA-L SMILEShelp_outline CSCCC(O)(CC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,567 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,932 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
| RHEA:25601 | RHEA:25602 | RHEA:25603 | RHEA:25604 | |
|---|---|---|---|---|
| Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
| UniProtKB help_outline |
|
|||
| EC numbers help_outline | ||||
| KEGG help_outline | ||||
| MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis.
Textor S., de Kraker J.-W., Hause B., Gershenzon J., Tokuhisa J.G.
Chain elongated, methionine (Met)-derived glucosinolates are a major class of secondary metabolites in Arabidopsis (Arabidopsis thaliana). The key enzymatic step in determining the length of the chain is the condensation of acetyl-coenzyme A with a series of omega-methylthio-2-oxoalkanoic acids, c ... >> More
Chain elongated, methionine (Met)-derived glucosinolates are a major class of secondary metabolites in Arabidopsis (Arabidopsis thaliana). The key enzymatic step in determining the length of the chain is the condensation of acetyl-coenzyme A with a series of omega-methylthio-2-oxoalkanoic acids, catalyzed by methylthioalkylmalate (MAM) synthases. The existence of two MAM synthases has been previously reported in the Arabidopsis ecotype Columbia: MAM1 and MAM3 (formerly known as MAM-L). Here, we describe the biochemical properties of the MAM3 enzyme, which is able to catalyze all six condensation reactions of Met chain elongation that occur in Arabidopsis. Underlining its broad substrate specificity, MAM3 also accepts a range of non-Met-derived 2-oxoacids, e.g. converting pyruvate to citramalate and 2-oxoisovalerate to isopropylmalate, a step in leucine biosynthesis. To investigate its role in vivo, we identified plant lines with mutations in MAM3 that resulted in a complete lack or greatly reduced levels of long-chain glucosinolates. This phenotype could be complemented by reintroduction of a MAM3 expression construct. Analysis of MAM3 mutants demonstrated that MAM3 catalyzes the formation of all glucosinolate chain lengths in vivo as well as in vitro, making this enzyme the major generator of glucosinolate chain length diversity in the plant. The localization of MAM3 in the chloroplast suggests that this organelle is the site of Met chain elongation. << Less
Plant Physiol. 144:60-71(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa.
Falk K.L., Vogel C., Textor S., Bartram S., Hick A., Pickett J.A., Gershenzon J.
Glucosinolates are a group of sulfur-rich thioglucoside natural products common in the Brassicaceae and related plant families. The first phase in the formation of many glucosinolates involves the chain extension of the amino acid methionine. Additional methylene groups are inserted into the side ... >> More
Glucosinolates are a group of sulfur-rich thioglucoside natural products common in the Brassicaceae and related plant families. The first phase in the formation of many glucosinolates involves the chain extension of the amino acid methionine. Additional methylene groups are inserted into the side chain of methionine by a three-step elongation cycle involving 2-oxo acid intermediates. This investigation demonstrated the first step of this chain elongation cycle in a partially-purified preparation from arugula (Eruca sativa). The 2-oxo acid derived from methionine, 4-methylthio-2-oxobutanoic acid, was shown to condense with acetyl-CoA to form 2-(2'-methylthioethyl)malate. The catalyst, designated as a 2-(omega-methylthioalkyl)malate synthase, belongs to a family of enzymes that mediate the condensation of acyl-CoAs with 2-oxo acids, including citrate synthase of the citric acid cycle, and 2-isopropylmalate synthase of leucine biosynthesis. The 2-(omega-methylthioalkyl)malate synthase studied here shares properties with other enzymes of this class, but appears chromatographically distinct and is found only in extracts of plant species producing glucosinolates from chain-elongated methionine derivatives. Although the principal glucosinolates of arugula are formed from methionine that has undergone two rounds of chain elongation to form dihomomethionine, studies with substrates and substrate analogs of different chain lengths showed that the isolated enzyme is responsible only for the condensation step of the first round of elongation. << Less
Phytochemistry 65:1073-1084(2004) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Molecular Basis of the Evolution of Methylthioalkylmalate Synthase and the Diversity of Methionine-Derived Glucosinolates.
Kumar R., Lee S.G., Augustine R., Reichelt M., Vassao D.G., Palavalli M.H., Allen A., Gershenzon J., Jez J.M., Bisht N.C.
The globally cultivated <i>Brassica</i> species possess diverse aliphatic glucosinolates, which are important for plant defense and animal nutrition. The committed step in the side chain elongation of methionine-derived aliphatic glucosinolates is catalyzed by methylthioalkylmalate synthase, which ... >> More
The globally cultivated <i>Brassica</i> species possess diverse aliphatic glucosinolates, which are important for plant defense and animal nutrition. The committed step in the side chain elongation of methionine-derived aliphatic glucosinolates is catalyzed by methylthioalkylmalate synthase, which likely evolved from the isopropylmalate synthases of leucine biosynthesis. However, the molecular basis for the evolution of methylthioalkylmalate synthase and its generation of natural product diversity in <i>Brassica</i> is poorly understood. Here, we show that <i>Brassica</i> genomes encode multiple methylthioalkylmalate synthases that have differences in expression profiles and 2-oxo substrate preferences, which account for the diversity of aliphatic glucosinolates across <i>Brassica</i> accessions. Analysis of the 2.1 Å resolution x-ray crystal structure of <i>Brassica juncea</i> methylthioalkylmalate synthase identified key active site residues responsible for controlling the specificity for different 2-oxo substrates and the determinants of side chain length in aliphatic glucosinolates. Overall, these results provide the evolutionary and biochemical foundation for the diversification of glucosinolate profiles across globally cultivated <i>Brassica</i> species, which could be used with ongoing breeding strategies toward the manipulation of beneficial glucosinolate compounds for animal health and plant protection. << Less
-
Kinetic and catalytic mechanisms of the methionine-derived glucosinolate biosynthesis enzyme methylthioalkylmalate synthase.
Kitainda V., Jez J.M.
In Brassica plants, methionine-derived aliphatic glucosinolates are chemically diverse natural products that serve as plant defense compounds, as well as molecules with dietary health-promoting effects. During their biosynthesis, methylthioalkylmalate synthase (MAMS) catalyzes the elongation react ... >> More
In Brassica plants, methionine-derived aliphatic glucosinolates are chemically diverse natural products that serve as plant defense compounds, as well as molecules with dietary health-promoting effects. During their biosynthesis, methylthioalkylmalate synthase (MAMS) catalyzes the elongation reaction of the aliphatic chain. The MAMS-catalyzed condensation of 4-methylthio-2-oxobutanoic acid and acetyl-CoA generates a 2-malate derivative that either enters the pathway for the synthesis of C<sub>3</sub>-glucosinolates or undergoes additional extension reactions, which lead to C<sub>4</sub>-to C<sub>9</sub>-glucosinolates. Recent determination of the x-ray crystal structure of MAMS from Brassica juncea (Indian mustard) provided insight on the molecular evolution of MAMS, especially substrate specificity changes, from the leucine biosynthesis enzyme α-isopropylmalate synthase but left details of the reaction mechanism unanswered. Here we use the B. juncea MAMS2A (BjMAMS2A) isoform to analyze the kinetic and catalytic mechanisms of this enzyme. Initial velocity studies indicate that MAMS follows an ordered bi bi kinetic mechanism, which based on the x-ray crystal structure, involves binding of 4-methylthio-2-oxobutanoic acid followed by acetyl-CoA. Examination of the pH-dependence of k<sub>cat</sub> and k<sub>cat</sub>/K<sub>m</sub> are consistent with acid/base catalysis. Site-directed mutagenesis of three residues originally proposed to function in the reaction mechanism-Arg89 (R89A, R89K, R89Q), Glu227 (E227A, E227D, E227Q), and His388 (H388A, H388N, H388Q, H388D, and H388E)-showed that only two mutants (E227Q and H388N) retained activity. Based on available structural and biochemical data, a revised reaction mechanism for MAMS-catalyzed elongation of methionine-derived aliphatic glucosinolates is proposed, which is likely also conserved in α-isopropylmalate synthase from leucine biosynthesis in plants and microbes. << Less
-
Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle.
Textor S., Bartram S., Kroymann J., Falk K.L., Hick A., Pickett J.A., Gershenzon J.
The major class of glucosinolates in Arabidopsis thaliana (L.) Heynh. are biosynthesized from methionine involving a three-step chain-elongation cycle. Each passage through the cycle results in the net addition of a single methylene group, with up to six cycles of elongation occurring in A. thalia ... >> More
The major class of glucosinolates in Arabidopsis thaliana (L.) Heynh. are biosynthesized from methionine involving a three-step chain-elongation cycle. Each passage through the cycle results in the net addition of a single methylene group, with up to six cycles of elongation occurring in A. thaliana. The first reaction of the cycle is catalyzed by a methylthioalkylmalate synthase (MAMS), which condenses a omega-methylthio-2-oxoalkanoic acid with acetyl-CoA. Here we have demonstrated that MAM1, one of two similar genes in the A. thaliana ecotype Columbia, encodes a MAMS catalyzing the condensing reactions of the first two elongation cycles but not those of further cycles. The Columbia ecotype is dominated by compounds that have undergone only two elongation cycles. The A. thaliana MAM1 protein exhibits basic sequence similarity to other previously described enzymes catalyzing the condensation of 2-oxo acids and acetyl-CoA, such as isopropylmalate synthase (EC 2.3.3.13), an enzyme of leucine biosynthesis, and homocitrate synthase (EC 2.3.3.14). It also shares similar properties with them, including the catalytic requirements for a divalent metal ion and an adenine nucleotide. However, the MAM1 protein does not show activity with the substrates of any of these other enzymes, and was chromatographically separable from isopropylmalate synthase in extracts of A. thaliana. Thus, MAM1 is exclusively an enzyme of secondary metabolism, distinct from primary metabolic enzymes catalyzing similar reactions. << Less
Planta 218:1026-1035(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Characterization of unique EDTA-insensitive methylthioalkylmalate synthase from Eutrema japonicum and its potential application in synthetic biology.
Medhanavyn D., Muranaka T., Yasumoto S.
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases ... >> More
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases (MAMs), which are responsible for the generation of glucosinolates with varying chain lengths. In this study, our primary focus was the characterization of two methylthioalkyl malate synthases, MAM1-1 and MAM1-2, derived from Eutrema japonicum, commonly referred to as Japanese wasabi. Eutremajaponicum MAMs (EjMAMs) were expressed in an Escherichiacoli expression system, subsequently purified, and in vitro enzymatic activity was assayed. We explored the kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs and compared them with those of previously documented MAMs. Surprisingly, EjMAM1-2, categorized as a metallolyase family enzyme, displayed 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, we utilized AlphaFold2 to generate structural homology models of EjMAMs, and used in silico analysis and mutagenesis studies to investigate the key residues participating in catalytic activity. Moreover, we examined in vivo biosynthesis in E. coli containing Arabidopsis thaliana branched-chain amino acid transferase 3 (AtBCAT3) along with AtMAMs or EjMAMs and demonstrated that EjMAM1-2 exhibited the highest conversion rate among those MAMs, converting l-methionine to 2-(2-methylthio) ethyl malate (2-(2-MT)EM). EjMAM1-2 shows a unique property in vitro and highest activity on converting l-methionine to 2-(2-MT)EM in vivo which displays high potential for isothiocyanate biosynthesis in E. coli platform. << Less
-
Glucosinolate and amino acid biosynthesis in Arabidopsis.
Field B., Cardon G., Traka M., Botterman J., Vancanneyt G., Mithen R.
Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalat ... >> More
Enzymes that catalyze the condensation of acetyl coenzyme A and 2-oxo acids are likely to be important in two distinct metabolic pathways in Arabidopsis. These are the synthesis of isopropylmalate, an intermediate of Leu biosynthesis in primary metabolism, and the synthesis of methylthioalkylmalates, intermediates of Met elongation in the synthesis of aliphatic glucosinolates (GSLs), in secondary metabolism. Four Arabidopsis genes in the ecotype Columbia potentially encode proteins that could catalyze these reactions. MAM1 and MAML are adjacent genes on chromosome 5 at the Gsl-elong locus, while MAML-3 and MAML-4 are at opposite ends of chr 1. The isopropylmalate synthase activity of each member of the MAM-like gene family was investigated by heterologous expression in an isopropylmalate synthase-null Escherichia coli mutant. Only the expression of MAML-3 restored the ability of the mutant to grow in the absence of Leu. A MAML knockout line (KO) lacked long-chain aliphatic GSLs, which were restored when the KO was transformed with a functional MAML gene. Variation in expression of MAML did not alter the total levels of Met-derived GSLs, but just the ratio of chain lengths. MAML overexpression in Columbia led to an increase in long-chain GSLs, and an increase in 3C GSLs. Moreover, plants overexpressing MAML contained at least two novel amino acids. One of these was positively identified via MS/MS as homo-Leu, while the other, with identical mass and fragmentation patterns, was likely to be homo-Ile. A MAML-4 KO did not exhibit any changes in GSL profile, but had perturbed soluble amino acid content. << Less
Plant Physiol. 135:828-839(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.