Reaction participants Show >> << Hide
- Name help_outline (2E,6E)-farnesyl diphosphate Identifier CHEBI:175763 Charge -3 Formula C15H25O7P2 InChIKeyhelp_outline VWFJDQUYCIWHTN-YFVJMOTDSA-K SMILEShelp_outline CC(C)=CCC\C(C)=C\CC\C(C)=C\COP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 175 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline germacrene A Identifier CHEBI:36517 (Beilstein: 6500908) help_outline Charge 0 Formula C15H24 InChIKeyhelp_outline XMRKUJJDDKYUHV-SJRHNVSNSA-N SMILEShelp_outline CC(=C)C1CC\C(C)=C\CC\C(C)=C\C1 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25452 | RHEA:25453 | RHEA:25454 | RHEA:25455 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes.
Bleeker P.M., Spyropoulou E.A., Diergaarde P.J., Volpin H., De Both M.T.J., Zerbe P., Bohlmann J., Falara V., Matsuba Y., Pichersky E., Haring M.A., Schuurink R.C.
Solanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trich ... >> More
Solanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trichomes from these plants. This approach resulted initially in the discovery of six sesquiterpene synthase cDNAs from S. lycopersicum and five from S. habrochaites. Searches of other databases and the S. lycopersicum genome resulted in the discovery of two additional sesquiterpene synthases expressed in trichomes. The sesquiterpene synthases from S. lycopersicum and S. habrochaites have high levels of protein identity. Several of them appeared to encode for non-functional proteins. Functional recombinant proteins produced germacrenes, β-caryophyllene/α-humulene, viridiflorene and valencene from (E,E)-farnesyl diphosphate. However, the activities of these enzymes do not completely explain the differences in sesquiterpene production between the two tomato plants. RT-qPCR confirmed high levels of expression of most of the S. lycopersicum sesquiterpene synthases in stem trichomes. In addition, one sesquiterpene synthase was induced by jasmonic acid, while another appeared to be slightly repressed by the treatment. Our data provide a foundation to study the evolution of terpene synthases in cultivated and wild tomato. << Less
Plant Mol. Biol. 77:323-336(2011) [PubMed] [EuropePMC]
This publication is cited by 26 other entries.
-
Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase.
Steele C.L., Crock J., Bohlmann J., Croteau R.B.
Grand fir (Abies grandis) has been developed as a model system for the study of oleoresin production in response to stem wounding and insect attack. The turpentine fraction of the oleoresin was shown to contain at least 38 sesquiterpenes that represent 12.5% of the turpentine, with the monoterpene ... >> More
Grand fir (Abies grandis) has been developed as a model system for the study of oleoresin production in response to stem wounding and insect attack. The turpentine fraction of the oleoresin was shown to contain at least 38 sesquiterpenes that represent 12.5% of the turpentine, with the monoterpenes comprising the remainder. Assays of cell-free extracts from grand fir stem with farnesyl diphosphate as substrate indicated that the constitutive sesquiterpene synthases produced the same sesquiterpenes found in the oleoresin and that, in response to wounding, only two new products were synthesized, delta-cadinene and (E)-alpha-bisabolene. A similarity based cloning strategy yielded two new cDNA species from a stem cDNA library that, when expressed in Escherichia coli and the gene products subsequently assayed, yielded a remarkable number of sesquiterpene products. The encoded enzymes have been named delta-selinene synthase and gamma-humulene synthase based on the principal products formed; however, each enzyme synthesizes three major products and produces 34 and 52 total sesquiterpenes, respectively, thereby accounting for many of the sesquiterpenes of the oleoresin. The deduced amino acid sequence of the delta-selinene synthase cDNA open reading frame encodes a protein of 581 residues (at 67.6 kDa), whereas that of the gamma-humulene synthase cDNA encodes a protein of 593 residues (at 67.9 kDa). The two amino acid sequences are 83% similar and 65% identical to each other and range in similarity from 65 to 67% and in identity from 43 to 46% when compared with the known sequences of monoterpene and diterpene synthases from grand fir. Although the two sesquiterpene synthases from this gymnosperm do not very closely resemble terpene synthases from angiosperm species (52-56% similarity and 26-30% identity, there are clustered regions of significant apparent homology between the enzymes of these two plant classes. The multi-step, multi-product reactions catalyzed by the sesquiterpene synthases from grand fir are among the most complex of any terpenoid cyclase thus far described. << Less
J. Biol. Chem. 273:2078-2089(1998) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.