Enzymes
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
-
Namehelp_outline
L-cysteinyl-tRNAPro
Identifier
RHEA-COMP:9701
Reactive part
help_outline
- Name help_outline 3'-(L-cysteinyl)adenylyl group Identifier CHEBI:78517 Charge 0 Formula C13H18N6O7PS SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](OC(=O)[C@@H]([NH3+])CS)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,337 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
tRNAPro
Identifier
RHEA-COMP:9702
Reactive part
help_outline
- Name help_outline AMP 3'-end residue Identifier CHEBI:78442 Charge -1 Formula C10H12N5O6P SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 79 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-cysteine Identifier CHEBI:35235 Charge 0 Formula C3H7NO2S InChIKeyhelp_outline XUJNEKJLAYXESH-REOHCLBHSA-N SMILEShelp_outline [NH3+][C@@H](CS)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 69 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25351 | RHEA:25352 | RHEA:25353 | RHEA:25354 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
MetaCyc help_outline |
Publications
-
Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein.
An S., Musier-Forsyth K.
Prolyl-tRNA synthetases (ProRSs) from all three domains of life have been shown to misactivate cysteine and to mischarge cysteine onto tRNAPro. Although most bacterial ProRSs possess an amino acid editing domain that deacylates mischarged Ala-tRNAPro, editing of Cys-tRNAPro has not been demonstrat ... >> More
Prolyl-tRNA synthetases (ProRSs) from all three domains of life have been shown to misactivate cysteine and to mischarge cysteine onto tRNAPro. Although most bacterial ProRSs possess an amino acid editing domain that deacylates mischarged Ala-tRNAPro, editing of Cys-tRNAPro has not been demonstrated and a double-sieve mechanism of editing does not appear to be sufficient to eliminate all misacylated tRNAPro species from the cell. It was recently shown that a ProRS paralog, the YbaK protein from Haemophilus influenzae, which is homologous to the ProRS editing domain, is capable of weakly deacylating Ala-tRNAPro. This function appears to be redundant with that of its corresponding ProRS, which contains a canonical bacterial editing domain. In the present study, we test the specificity of editing by H. influenzae YbaK and show that it efficiently edits Cys-tRNAPro and that a conserved Lys residue is essential for this activity. These findings represent the first example of an editing domain paralog possessing altered specificity and suggest that similar autonomous editing domains could act upon different mischarged tRNAs thus providing cells with enhanced proofreading potential. This work also suggests a novel mechanism of editing wherein a third sieve is used to clear Cys-tRNAPro in at least some organisms. << Less
J. Biol. Chem. 279:42359-42362(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Aminoacyl-tRNA substrate and enzyme backbone atoms contribute to translational quality control by YbaK.
Kumar S., Das M., Hadad C.M., Musier-Forsyth K.
Amino acids are covalently attached to their corresponding transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases. Proofreading mechanisms exist to ensure that high fidelity is maintained in this key step in protein synthesis. Prolyl-tRNA synthetase (ProRS) can misacylate cognate tRNA(Pro) with Ala a ... >> More
Amino acids are covalently attached to their corresponding transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases. Proofreading mechanisms exist to ensure that high fidelity is maintained in this key step in protein synthesis. Prolyl-tRNA synthetase (ProRS) can misacylate cognate tRNA(Pro) with Ala and Cys. The cis-editing domain of ProRS (INS) hydrolyzes Ala-tRNA(Pro), whereas Cys-tRNA(Pro) is hydrolyzed by a single domain editing protein, YbaK, in trans. Previous studies have proposed a model of substrate-binding by bacterial YbaK and elucidated a substrate-assisted mechanism of catalysis. However, the microscopic steps in this mechanism have not been investigated. In this work, we carried out biochemical experiments together with a detailed hybrid quantum mechanics/molecular mechanics study to investigate the mechanism of catalysis by Escherichia coli YbaK. The results support a mechanism wherein cyclization of the substrate Cys results in cleavage of the Cys-tRNA ester bond. Protein side chains do not play a significant role in YbaK catalysis. Instead, protein backbone atoms play crucial roles in stabilizing the transition state, while the product is stabilized by the 2'-OH of the tRNA. << Less
-
Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex.
An S., Musier-Forsyth K.
Aminoacyl-tRNA synthetases are multidomain enzymes that often possess two activities to ensure translational accuracy. A synthetic active site catalyzes tRNA aminoacylation, while an editing active site hydrolyzes mischarged tRNAs. Prolyl-tRNA synthetases (ProRS) have been shown to misacylate Cys ... >> More
Aminoacyl-tRNA synthetases are multidomain enzymes that often possess two activities to ensure translational accuracy. A synthetic active site catalyzes tRNA aminoacylation, while an editing active site hydrolyzes mischarged tRNAs. Prolyl-tRNA synthetases (ProRS) have been shown to misacylate Cys onto tRNA(Pro), but lack a Cys-specific editing function. The synthetase-like Haemophilus influenzae YbaK protein was recently shown to hydrolyze misacylated Cys-tRNA(Pro) in trans. However, the mechanism of specific substrate selection by this single domain hydrolase is unknown. Here, we demonstrate that YbaK alone appears to lack specific tRNA recognition capabilities. Moreover, YbaK cannot compete for aminoacyl-tRNAs in the presence of elongation factor Tu, suggesting that YbaK acts before release of the aminoacyl-tRNA from the synthetase. In support of this idea, cross-linking studies reveal the formation of binary (ProRS.YbaK) and ternary (ProRS.YbaK.tRNA) complexes. The binding constants for the interaction between ProRS and YbaK are 550 nM and 45 nM in the absence and presence of tRNA(Pro), respectively. These results suggest that the specificity of trans-editing by YbaK is ensured through formation of a novel ProRS.YbaK.tRNA complex. << Less
-
The bacterial YbaK protein is a Cys-tRNAPro and Cys-tRNA Cys deacylase.
Ruan B., Soll D.
Bacterial prolyl-tRNA synthetases and some smaller paralogs, YbaK and ProX, can hydrolyze misacylated Cys-tRNA Pro or Ala-tRNA Pro. To assess the significance of this quality control editing reaction in vivo, we tested Escherichia coli ybaK for its ability to suppress the E. coli thymidylate synth ... >> More
Bacterial prolyl-tRNA synthetases and some smaller paralogs, YbaK and ProX, can hydrolyze misacylated Cys-tRNA Pro or Ala-tRNA Pro. To assess the significance of this quality control editing reaction in vivo, we tested Escherichia coli ybaK for its ability to suppress the E. coli thymidylate synthase thyA:146CCA missense mutant strain, which requires Cys-tRNA(Pro) for growth in the absence of thymine. Missense suppression was observed in a ybaK deletion background, suggesting that YbaK functions as a Cys-tRNA Pro deacylase in vivo. In vitro studies with the full set of 20 E. coli aminoacyl-tRNAs revealed that the Haemophilus influenzae and E. coli YbaK proteins are moderately general aminoacyl-tRNA deacylases that preferentially hydrolyze Cys-tRNA Pro and Cys-tRNA Cys and are also weak deacylases that cleave Gly-tRNA, Ala-tRNA, Ser-tRNA, Pro-tRNA, and Met-tRNA. The ProX protein acted as an aminoacyl-tRNA deacylase that cleaves preferentially Ala-tRNA and Gly-tRNA. The potential of H. influenzae YbaK to hydrolyze in vivo correctly charged Cys-tRNA Cys was tested in E. coli strain X2913 (ybaK+). Overexpression of H. influenzae ybaK decreased the in vivo ratio of Cys-tRNA Cys to tRNA Cys from 65 to 35% and reduced the growth rate of strain X2913 by 30% in LB medium. These data suggest that YbaK-mediated hydrolysis of aminoacyl-tRNA can influence cell growth. << Less
J. Biol. Chem. 280:25887-25891(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.