Enzymes
UniProtKB help_outline | 7 proteins |
Enzyme class help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CDP Identifier CHEBI:58069 Charge -3 Formula C9H12N3O11P2 InChIKeyhelp_outline ZWIADYZPOWUWEW-XVFCMESISA-K SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CTP Identifier CHEBI:37563 (Beilstein: 4732530) help_outline Charge -4 Formula C9H12N3O14P3 InChIKeyhelp_outline PCDQPRRSZKQHHS-XVFCMESISA-J SMILEShelp_outline Nc1ccn([C@@H]2O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]2O)c(=O)n1 2D coordinates Mol file for the small molecule Search links Involved in 81 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25237 | RHEA:25238 | RHEA:25239 | RHEA:25240 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Nucleoside selectivity of Aspergillus fumigatus nucleoside-diphosphate kinase.
Nguyen S., Jovcevski B., Pukala T.L., Bruning J.B.
Aspergillus fumigatus infections are rising at a disconcerting rate in tandem with antifungal resistance rates. Efforts to develop novel antifungals have been hindered by the limited knowledge of fundamental biological and structural mechanisms of A. fumigatus propagation. Biosynthesis of NTPs, th ... >> More
Aspergillus fumigatus infections are rising at a disconcerting rate in tandem with antifungal resistance rates. Efforts to develop novel antifungals have been hindered by the limited knowledge of fundamental biological and structural mechanisms of A. fumigatus propagation. Biosynthesis of NTPs, the building blocks of DNA and RNA, is catalysed by NDK. An essential enzyme in A. fumigatus, NDK poses as an attractive target for novel antifungals. NDK exhibits broad substrate specificity across species, using both purines and pyrimidines, but the selectivity of such nucleosides in A. fumigatus NDK is unknown, impeding structure-guided inhibitor design. Structures of NDK in unbound- and NDP-bound states were solved, and NDK activity was assessed in the presence of various NTP substrates. We present the first instance of a unique substrate binding mode adopted by CDP and TDP specific to A. fumigatus NDK that illuminates the structural determinants of selectivity. Analysis of the oligomeric state reveals that A. fumigatus NDK adopts a hexameric assembly in both unbound- and NDP-bound states, contrary to previous reports suggesting it is tetrameric. Kinetic analysis revealed that ATP exhibited the greatest turnover rate (321 ± 33.0 s<sup>-1</sup> ), specificity constant (626 ± 110.0 mm<sup>-1</sup> ·s<sup>-1</sup> ) and binding free energy change (-37.0 ± 3.5 kcal·mol<sup>-1</sup> ). Comparatively, cytidine nucleosides displayed the slowest turnover rate (53.1 ± 3.7 s<sup>-1</sup> ) and lowest specificity constant (40.2 ± 4.4 mm<sup>-1</sup> ·s<sup>-1</sup> ). We conclude that NDK exhibits nucleoside selectivity whereby adenine nucleosides are used preferentially compared to cytidine nucleosides, and these insights can be exploited to guide drug design. ENZYMES: Nucleoside-diphosphate kinase (EC 2.7.4.6). DATABASE: Structural data are available in the PDB database under the accession numbers: Unbound-NDK (6XP4), ADP-NDK (6XP7), GDP-NDK (6XPS), IDP-NDK (6XPU), UDP-NDK (6XPT), CDP-NDK (6XPW), TDP-NDK (6XPV). << Less
FEBS J 288:2398-2417(2021) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Saccharomyces cerevisiae nucleoside-diphosphate kinase: purification, characterization, and substrate specificity.
Jong A.Y., Ma J.J.
Nucleoside-diphosphate kinase is an enzyme which catalyzes the phosphorylation of nucleoside diphosphates into the corresponding triphosphates for nucleic acid biosynthesis. In this communication, we describe the purification and characterization of nucleoside-diphosphate kinase from yeast. The pu ... >> More
Nucleoside-diphosphate kinase is an enzyme which catalyzes the phosphorylation of nucleoside diphosphates into the corresponding triphosphates for nucleic acid biosynthesis. In this communication, we describe the purification and characterization of nucleoside-diphosphate kinase from yeast. The purified protein appears to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel analysis, with a molecular weight of about 17,000-18,000. An estimate from the fast protein liquid chromatography Superose 12 gel filtration shows a native molecular weight of about 68,000 to 70,000. The results suggest that yeast nucleoside-diphosphate kinase is composed of four subunits. Substrate specificity studies show that the relative activity of nucleoside diphosphates (NDP) as phosphate acceptors is in the order of dTDP greater than CDP greater than UDP greater than dUDP greater than GDP greater than or equal to dGDP greater than dCDP greater than dADP greater than ADP; and the relative activity of triphosphate donors is in the order of UTP greater than dTTP greater than CTP greater than dCTP greater than dATP greater than ATP greater than or equal to dGTP greater than GTP. The Km and Vm of dTDP, dGDP, dCDP, dUDP, CDP, and UDP have been determined. The rate constant studies indicate that the purified NDP kinase prefers using, to a slight extent, dTDP (approximately 800 min-1) as the substrate rather than other tested deoxyribo- and ribonucleotides (350-450 min-1). The broad substrate specificity and kinetic data suggest that the enzyme is involved in both DNA and RNA metabolism. << Less
Arch. Biochem. Biophys. 291:241-246(1991) [PubMed] [EuropePMC]
This publication is cited by 9 other entries.
-
The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase.
Amiri M., Conserva F., Panayiotou C., Karlsson A., Solaroli N.
Adenylate kinases regulate adenine nucleotide levels and are present in different intracellular compartments. These enzymes also participate in the activation of pharmacologically active nucleoside and nucleotide analogs. We have in the present study identified the ninth isoform of the adenylate k ... >> More
Adenylate kinases regulate adenine nucleotide levels and are present in different intracellular compartments. These enzymes also participate in the activation of pharmacologically active nucleoside and nucleotide analogs. We have in the present study identified the ninth isoform of the adenylate kinase family of enzymes and accordingly named the protein adenylate kinase 9 (AK9). Initially a full-length cDNA of a hypothetical protein containing a predicted adenylate kinase domain was identified and subsequently cloned and expressed in Escherichia coli. The substrate specificity of the recombinant protein showed that the enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP as phosphate donor, while only AMP and CMP were phosphorylated when GTP was the phosphate donor. The kinetic parameters of AK9 were determined for AMP, dAMP and CMP with ATP as phosphate donor. Interestingly, in addition to the diphosphate products, a nucleoside diphosphate kinase (NDPK) activity was also present with subsequent triphosphates formed. With ATP or GTP as phosphate donor it was possible to detect the production of ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and TTP as enzymatic products from the corresponding diphosphate substrates. A number of previously characterized adenylate kinases were also tested and found to possess a broad phosphotransferase activity similar to AK9. These enzymes are accordingly suggested to be regarded as nucleoside mono- and diphosphate kinases with catalytic activities possibly determined by local substrate concentrations. << Less
Int. J. Biochem. Cell Biol. 45:925-931(2013) [PubMed] [EuropePMC]
This publication is cited by 23 other entries.