Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
L-seryl-tRNASec
Identifier
RHEA-COMP:9742
Reactive part
help_outline
- Name help_outline 3'-(L-seryl)adenylyl group Identifier CHEBI:78533 Charge -1 Formula C13H17N6O8P SMILEShelp_outline N[C@@H](CO)C(=O)O[C@@H]1[C@@H](COP([O-])(-*)=O)O[C@H]([C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
O-phospho-L-seryl-tRNASec
Identifier
RHEA-COMP:9947
Reactive part
help_outline
- Name help_outline 3'-(O-phosphonato-L-seryl)adenylyl group Identifier CHEBI:78551 Charge -2 Formula C13H17N6O11P2 SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(-*)=O)[C@@H](OC(=O)[C@@H]([NH3+])COP([O-])([O-])=O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:25037 | RHEA:25038 | RHEA:25039 | RHEA:25040 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
Carlson B.A., Xu X.M., Kryukov G.V., Rao M., Berry M.J., Gladyshev V.N., Hatfield D.L.
In 1970, a kinase activity that phosphorylated a minor species of seryl-tRNA to form phosphoseryl-tRNA was found in rooster liver [Maenpaa, P. H. & Bernfield, M. R. (1970) Proc. Natl. Acad. Sci. USA 67, 688-695], and a minor seryl-tRNA that decoded the nonsense UGA was detected in bovine liver. Th ... >> More
In 1970, a kinase activity that phosphorylated a minor species of seryl-tRNA to form phosphoseryl-tRNA was found in rooster liver [Maenpaa, P. H. & Bernfield, M. R. (1970) Proc. Natl. Acad. Sci. USA 67, 688-695], and a minor seryl-tRNA that decoded the nonsense UGA was detected in bovine liver. The phosphoseryl-tRNA and the minor UGA-decoding seryl-tRNA were subsequently identified as selenocysteine (Sec) tRNA[Ser]Sec, but the kinase activity remained elusive. Herein, by using a comparative genomics approach that searched completely sequenced archaeal genomes for a kinase-like protein with a pattern of occurrence similar to that of components of Sec insertion machinery, we detected a candidate gene for mammalian phosphoseryl-tRNA[Ser]Sec kinase (pstk). Mouse pstk was cloned, and the gene product (PSTK) was expressed and characterized. PSTK specifically phosphorylated the seryl moiety on seryl-tRNA[Ser]Sec and, in addition, had a requirement for ATP and Mg2+. Proteins with homology to mammalian PSTK occur in Drosophila, Caenorhabditis elegans, Methanopyrus kandleri, and Methanococcus jannaschii, suggesting a conservation of its function across archaea and eukaryotes that synthesize selenoproteins and the absence of this function in bacteria, plants, and yeast. The fact that PSTK has been highly conserved in evolution suggests that it plays an important role in selenoprotein biosynthesis and/or regulation. << Less
Proc. Natl. Acad. Sci. U.S.A. 101:12848-12853(2004) [PubMed] [EuropePMC]
-
Structural and functional investigation of a putative archaeal selenocysteine synthase.
Kaiser J.T., Gromadski K., Rother M., Engelhardt H., Rodnina M.V., Wahl M.C.
Bacterial selenocysteine synthase converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) for selenoprotein biosynthesis. The identity of this enzyme in archaea and eukaryotes is unknown. On the basis of sequence similarity, a conserved open reading frame has been annotated as a selenocysteine synth ... >> More
Bacterial selenocysteine synthase converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) for selenoprotein biosynthesis. The identity of this enzyme in archaea and eukaryotes is unknown. On the basis of sequence similarity, a conserved open reading frame has been annotated as a selenocysteine synthase gene in archaeal genomes. We have determined the crystal structure of the corresponding protein from Methanococcus jannaschii, MJ0158. The protein was found to be dimeric with a distinctive domain arrangement and an exposed active site, built from residues of the large domain of one protomer alone. The shape of the dimer is reminiscent of a substructure of the decameric Escherichia coli selenocysteine synthase seen in electron microscopic projections. However, biochemical analyses demonstrated that MJ0158 lacked affinity for E. coli seryl-tRNA(Sec) or M. jannaschii seryl-tRNA(Sec), and neither substrate was directly converted to selenocysteinyl-tRNA(Sec) by MJ0158 when supplied with selenophosphate. We then tested a hypothetical M. jannaschii O-phosphoseryl-tRNA(Sec) kinase and demonstrated that the enzyme converts seryl-tRNA(Sec) to O-phosphoseryl-tRNA(Sec) that could constitute an activated intermediate for selenocysteinyl-tRNA(Sec) production. MJ0158 also failed to convert O-phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec). In contrast, both archaeal and bacterial seryl-tRNA synthetases were able to charge both archaeal and bacterial tRNA(Sec) with serine, and E. coli selenocysteine synthase converted both types of seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec). These findings demonstrate that a number of factors from the selenoprotein biosynthesis machineries are cross-reactive between the bacterial and the archaeal systems but that MJ0158 either does not encode a selenocysteine synthase or requires additional factors for activity. << Less