Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-β-D-muramate 6-phosphate Identifier CHEBI:58721 Charge -3 Formula C11H17NO11P InChIKeyhelp_outline NMEMTQKUEVNSPV-YVNCZSHWSA-K SMILEShelp_outline C[C@@H](O[C@H]1[C@H](O)[C@@H](COP([O-])([O-])=O)O[C@@H](O)[C@@H]1NC(C)=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (R)-lactate Identifier CHEBI:16004 (Beilstein: 4655978) help_outline Charge -1 Formula C3H5O3 InChIKeyhelp_outline JVTAAEKCZFNVCJ-UWTATZPHSA-M SMILEShelp_outline C[C@@H](O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 23 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-β-D-glucosamine 6-phosphate Identifier CHEBI:58826 Charge -2 Formula C8H14NO9P InChIKeyhelp_outline BRGMHAYQAZFZDJ-FMDGEEDCSA-L SMILEShelp_outline CC(=O)N[C@H]1[C@H](O)O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24956 | RHEA:24957 | RHEA:24958 | RHEA:24959 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
Related reactions help_outline
More general form(s) of this reaction
Publications
-
MurQ etherase is required by Escherichia coli in order to metabolize anhydro-N-acetylmuramic acid obtained either from the environment or from its own cell wall.
Uehara T., Suefuji K., Jaeger T., Mayer C., Park J.T.
MurQ is an N-acetylmuramic acid-phosphate (MurNAc-P) etherase that converts MurNAc-P to N-acetylglucosamine-phosphate and is essential for growth on MurNAc as the sole source of carbon (T. Jaegar, M. Arsic, and C. Mayer, J. Biol. Chem. 280:30100-30106, 2005). Here we show that MurQ is the only Mur ... >> More
MurQ is an N-acetylmuramic acid-phosphate (MurNAc-P) etherase that converts MurNAc-P to N-acetylglucosamine-phosphate and is essential for growth on MurNAc as the sole source of carbon (T. Jaegar, M. Arsic, and C. Mayer, J. Biol. Chem. 280:30100-30106, 2005). Here we show that MurQ is the only MurNAc-P etherase in Escherichia coli and that MurQ and AnmK kinase are required for utilization of anhydro-MurNAc derived either from cell wall murein or imported from the medium. << Less
J. Bacteriol. 188:1660-1662(2006) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Recycling of the anhydro-N-acetylmuramic acid derived from cell wall murein involves a two-step conversion to N-acetylglucosamine-phosphate.
Uehara T., Suefuji K., Valbuena N., Meehan B., Donegan M., Park J.T.
Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNA ... >> More
Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P). The sugar is first phosphorylated by anhydro-N-acetylmuramic acid kinase (AnmK), yielding MurNAc-P, and this is followed by action of an etherase which cleaves the bond between D-lactic acid and the N-acetylglucosamine moiety of MurNAc-P, yielding GlcNAc-P. The kinase gene has been identified by a reverse genetics method. The enzyme was overexpressed, purified, and characterized. The cell extract of an anmK deletion mutant totally lacked activity on anhMurNAc. Surprisingly, in the anmK mutant, anhMurNAc did not accumulate in the cytoplasm but instead was found in the medium, indicating that there was rapid efflux of free anhMurNAc. << Less
J. Bacteriol. 187:3643-3649(2005) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.