Reaction participants Show >> << Hide
- Name help_outline 5-[(5-phospho-1-deoxy-D-ribulos-1-ylimino)methylamino]-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide Identifier CHEBI:58525 Charge -4 Formula C15H21N5O15P2 InChIKeyhelp_outline BLKFNHOCHNCLII-GHVQHMAVSA-J SMILEShelp_outline NC(=O)c1ncn([C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)c1NC=NCC(=O)[C@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamine Identifier CHEBI:58359 Charge 0 Formula C5H10N2O3 InChIKeyhelp_outline ZDXPYRJPNDTMRX-VKHMYHEASA-N SMILEShelp_outline NC(=O)CC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 75 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-amino-1-(5-phospho-β-D-ribosyl)imidazole-4-carboxamide Identifier CHEBI:58475 (Beilstein: 6669264) help_outline Charge -2 Formula C9H13N4O8P InChIKeyhelp_outline NOTGFIUVDGNKRI-UUOKFMHZSA-L SMILEShelp_outline NC(=O)c1ncn([C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)c1N 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-erythro-1-(imidazol-4-yl)glycerol 3-phosphate Identifier CHEBI:58278 Charge -2 Formula C6H9N2O6P InChIKeyhelp_outline HFYBTHCYPKEDQQ-RITPCOANSA-L SMILEShelp_outline O[C@H](COP([O-])([O-])=O)[C@@H](O)c1c[nH]cn1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-glutamate Identifier CHEBI:29985 (CAS: 11070-68-1) help_outline Charge -1 Formula C5H8NO4 InChIKeyhelp_outline WHUUTDBJXJRKMK-VKHMYHEASA-M SMILEShelp_outline [NH3+][C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 244 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24793 | RHEA:24794 | RHEA:24795 | RHEA:24796 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Reaction coupling through interdomain contacts in imidazole glycerol phosphate synthase.
Myers R.S., Amaro R.E., Luthey-Schulten Z.A., Davisson V.J.
Imidazole glycerol phosphate (IGP) synthase, a triad glutamine amidotransferase, catalyzes the fifth step in the histidine biosynthetic pathway, where ammonia from glutamine is incorporated into N1-[(5'-phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to yield IGP ... >> More
Imidazole glycerol phosphate (IGP) synthase, a triad glutamine amidotransferase, catalyzes the fifth step in the histidine biosynthetic pathway, where ammonia from glutamine is incorporated into N1-[(5'-phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) to yield IGP and 5'-(5-aminoimidazole-4-carboxamide) ribonucleotide (AICAR). The triad family of glutamine amidotransferases is formed by the coupling of two disparate subdomains, an acceptor domain and a glutamine hydrolysis domain. Each of the enzymes in this family share a common glutaminase domain for which the glutaminase activity is tightly regulated by an acceptor substrate domain. In IGP synthase the glutaminase and PRFAR binding sites are separated by 30 A. Using kinetic analyses of site-specific mutants and molecular dynamic simulations, we have determined that an interdomain salt bridge in IGP synthase between D359 and K196 (approximately 16 A from the PRFAR binding site) plays a key role in mediating communication between the two active sites. This interdomain contact modulates the glutaminase loop containing the histidine and glutamic acid of the catalytic triad to control glutamine hydrolysis. We propose this to be a general principle of catalytic coupling that may be applied to the entire triad glutamine amidotransferase family. << Less
-
Imidazole glycerol phosphate synthase from Thermotoga maritima. Quaternary structure, steady-state kinetics, and reaction mechanism of the bienzyme complex.
Beismann-Driemeyer S., Sterner R.
Imidazole glycerol phosphate synthase, which links histidine and de novo purine biosynthesis, is a member of the glutamine amidotransferase family. In bacteria, imidazole glycerol phosphate synthase constitutes a bienzyme complex of the glutaminase subunit HisH and the synthase subunit HisF. Nasce ... >> More
Imidazole glycerol phosphate synthase, which links histidine and de novo purine biosynthesis, is a member of the glutamine amidotransferase family. In bacteria, imidazole glycerol phosphate synthase constitutes a bienzyme complex of the glutaminase subunit HisH and the synthase subunit HisF. Nascent ammonia produced by HisH reacts at the active site of HisF with N'-((5'-phosphoribulosyl)formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide to yield the products imidazole glycerol phosphate and 5-aminoimidazole-4-carboxamide ribotide. In order to elucidate the interactions between HisH and HisF and the catalytic mechanism of the HisF reaction, the enzymes tHisH and tHisF from Thermotoga maritima were produced in Escherichia coli, purified, and characterized. Isolated tHisH showed no detectable glutaminase activity but was stimulated by complex formation with tHisF to which either the product imidazole glycerol phosphate or a substrate analogue were bound. Eight conserved amino acids at the putative active site of tHisF were exchanged by site-directed mutagenesis, and the purified variants were investigated by steady-state kinetics. Aspartate 11 appeared to be essential for the synthase activity both in vitro and in vivo, and aspartate 130 could be partially replaced only by glutamate. The carboxylate groups of these residues could provide general acid/base catalysis in the proposed catalytic mechanism of the synthase reaction. << Less
J. Biol. Chem. 276:20387-20396(2001) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Toward understanding the mechanism of the complex cyclization reaction catalyzed by imidazole glycerolphosphate synthase: crystal structures of a ternary complex and the free enzyme.
Chaudhuri B.N., Lange S.C., Myers R.S., Davisson V.J., Smith J.L.
Imidazole glycerol phosphate synthase catalyzes formation of the imidazole ring in histidine biosynthesis. The enzyme is also a glutamine amidotransferase, which produces ammonia in a glutaminase active site and channels it through a 30-A internal tunnel to a cyclase active site. Glutaminase activ ... >> More
Imidazole glycerol phosphate synthase catalyzes formation of the imidazole ring in histidine biosynthesis. The enzyme is also a glutamine amidotransferase, which produces ammonia in a glutaminase active site and channels it through a 30-A internal tunnel to a cyclase active site. Glutaminase activity is impaired in the resting enzyme, and stimulated by substrate binding in the cyclase active site. The signaling mechanism was investigated in the crystal structure of a ternary complex in which the glutaminase active site was inactivated by a glutamine analogue and the unstable cyclase substrate was cryo-trapped in the active site. The orientation of N(1)-(5'-phosphoribulosyl)-formimino-5-aminoimidazole-4-carboxamide ribonucleotide in the cyclase active site implicates one side of the cyclase domain in signaling to the glutaminase domain. This side of the cyclase domain contains the interdomain hinge. Two interdomain hydrogen bonds, which do not exist in more open forms of the enzyme, are proposed as molecular signals. One hydrogen bond connects the cyclase domain to the substrate analogue in the glutaminase active site. The second hydrogen bond connects to a peptide that forms an oxyanion hole for stabilization of transient negative charge during glutamine hydrolysis. Peptide rearrangement induced by a fully closed domain interface is proposed to activate the glutaminase by unblocking the oxyanion hole. This interpretation is consistent with biochemical results [Myers, R. S., et al., (2003) Biochemistry 42, 7013-7022, the accompanying paper in this issue] and with structures of the free enzyme and a binary complex with a second glutamine analogue. << Less
-
Structural evidence for ammonia tunneling across the (beta alpha)(8) barrel of the imidazole glycerol phosphate synthase bienzyme complex.
Douangamath A., Walker M., Beismann-Driemeyer S., Vega-Fernandez M.C., Sterner R., Wilmanns M.
Since reactive ammonia is not available under physiological conditions, glutamine is used as a source for the incorporation of nitrogen in a number of metabolic pathway intermediates. The heterodimeric ImGP synthase that links histidine and purine biosynthesis belongs to the family of glutamine am ... >> More
Since reactive ammonia is not available under physiological conditions, glutamine is used as a source for the incorporation of nitrogen in a number of metabolic pathway intermediates. The heterodimeric ImGP synthase that links histidine and purine biosynthesis belongs to the family of glutamine amidotransferases in which the glutaminase activity is coupled with a subsequent synthase activity specific for each member of the enzyme family. Its X-ray structure from the hyperthermophile Thermotoga maritima shows that the glutaminase subunit is associated with the N-terminal face of the (beta alpha)(8) barrel cyclase subunit. The complex reveals a putative tunnel for the transfer of ammonia over a distance of 25 A. Although ammonia tunneling has been reported for glutamine amidotransferases, the ImGP synthase has evolved a novel mechanism, which extends the known functional properties of the versatile (beta alpha)(8) barrel fold. << Less
Comments
Multistep reaction: RHEA:15889 + RHEA:45184