Reaction participants Show >> << Hide
- Name help_outline 5,10-methylenetetrahydromethanopterin Identifier CHEBI:57818 Charge -3 Formula C31H42N6O16P InChIKeyhelp_outline GBMIGEWJAPFSQI-CAFBYHECSA-K SMILEShelp_outline [H][C@]12[C@H](C)Nc3nc(N)[nH]c(=O)c3N1CN([C@@H]2C)c1ccc(C[C@H](O)[C@H](O)[C@H](O)CO[C@H]2O[C@H](COP([O-])(=O)O[C@@H](CCC([O-])=O)C([O-])=O)[C@@H](O)[C@H]2O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5,10-methenyl-5,6,7,8-tetrahydromethanopterin Identifier CHEBI:58337 Charge -2 Formula C31H41N6O16P InChIKeyhelp_outline RANKJVUGLXUXOL-CAFBYHECSA-L SMILEShelp_outline [H][C@]12[C@H](C)Nc3nc(N)[nH]c(=O)c3[N+]1=CN([C@@H]2C)c1ccc(C[C@H](O)[C@H](O)[C@H](O)CO[C@H]2O[C@H](COP([O-])(=O)O[C@@H](CCC([O-])=O)C([O-])=O)[C@@H](O)[C@H]2O)cc1 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24682 | RHEA:24683 | RHEA:24684 | RHEA:24685 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structure of methylene-tetrahydromethanopterin dehydrogenase from methylobacterium extorquens AM1.
Ermler U., Hagemeier C.H., Roth A., Demmer U., Grabarse W., Warkentin E., Vorholt J.A.
NADP-dependent methylene-H(4)MPT dehydrogenase, MtdA, from Methylobacterium extorquens AM1 catalyzes the dehydrogenation of methylene-tetrahydromethanopterin and methylene-tetrahydrofolate with NADP(+) as cosubstrate. The X-ray structure of MtdA with and without NADP bound was established at 1.9 A ... >> More
NADP-dependent methylene-H(4)MPT dehydrogenase, MtdA, from Methylobacterium extorquens AM1 catalyzes the dehydrogenation of methylene-tetrahydromethanopterin and methylene-tetrahydrofolate with NADP(+) as cosubstrate. The X-ray structure of MtdA with and without NADP bound was established at 1.9 A resolution. The enzyme is present as a homotrimer. The alpha,beta fold of the monomer is related to that of methylene-H(4)F dehydrogenases, suggesting a common evolutionary origin. The position of the active site is located within a large crevice built up by the two domains of one subunit and one domain of a second subunit. Methylene-H(4)MPT could be modeled into the cleft, and crucial active site residues such as Phe18, Lys256, His260, and Thr102 were identified. The molecular basis of the different substrate specificities and different catalytic demands of MtdA compared to methylene-H(4)F dehydrogenases are discussed. << Less
Structure 10:1127-1137(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.
Vorholt J.A., Chistoserdova L.V., Lidstrom M.E., Thauer R.K.
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid se ... >> More
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the mtdA gene product. The purified enzyme catalyzed the dehydrogenation of methylene H4MPT with NADP+ rather than with NAD+, with a specific activity of approximately 400 U/mg of protein. It also catalyzed the dehydrogenation of methylene tetrahydrofolate (methylene H4F) with NADP+. With methylene H4F as the substrate, however, the specific activity (26 U/mg) and the catalytic efficiency (Vmax/Km) were approximately 20-fold lower than with methylene H4MPT. Whereas the dehydrogenation of methylene H4MPT (E0 = -390 mV) with NADP+ (E0 = -320 mV) proceeded essentially irreversibly, the dehydrogenation of methylene H4F (E0 = -300 mV) was fully reversible. Comparison of the primary structure of the NADP-dependent dehydrogenase from M. extorquens AM1 with those of methylene H4F dehydrogenases from other bacteria and eucarya and with those of methylene H4MPT dehydrogenases from methanogenic archaea revealed only marginally significant similarity (<15%). << Less
J. Bacteriol. 180:5351-5356(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.