Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
- Name help_outline a 3-oxo acid Identifier CHEBI:35973 Charge -1 Formula C3H2O3R SMILEShelp_outline C(C([O-])=O)C(*)=O 2D coordinates Mol file for the small molecule Search links Involved in 95 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinyl-CoA Identifier CHEBI:57292 Charge -5 Formula C25H35N7O19P3S InChIKeyhelp_outline VNOYUJKHFWYWIR-ITIYDSSPSA-I SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 44 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 3-oxoacyl-CoA Identifier CHEBI:90726 Charge -4 Formula C24H33N7O18P3SR SMILEShelp_outline [C@@H]1(N2C3=C(C(=NC=N3)N)N=C2)O[C@H](COP(OP(OCC([C@H](C(NCCC(NCCSC(=O)CC(=O)*)=O)=O)O)(C)C)(=O)[O-])(=O)[O-])[C@H]([C@H]1O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline succinate Identifier CHEBI:30031 (CAS: 56-14-4) help_outline Charge -2 Formula C4H4O4 InChIKeyhelp_outline KDYFGRWQOYBRFD-UHFFFAOYSA-L SMILEShelp_outline [O-]C(=O)CCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 332 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24564 | RHEA:24565 | RHEA:24566 | RHEA:24567 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Catalytic role of the conformational change in succinyl-CoA:3-oxoacid CoA transferase on binding CoA.
Fraser M.E., Hayakawa K., Brown W.D.
Catalysis by succinyl-CoA:3-oxoacid CoA transferase proceeds through a thioester intermediate in which CoA is covalently linked to the enzyme. To determine the conformation of the thioester intermediate, crystals of the pig enzyme were grown in the presence of the substrate acetoacetyl-CoA. X-ray ... >> More
Catalysis by succinyl-CoA:3-oxoacid CoA transferase proceeds through a thioester intermediate in which CoA is covalently linked to the enzyme. To determine the conformation of the thioester intermediate, crystals of the pig enzyme were grown in the presence of the substrate acetoacetyl-CoA. X-ray diffraction data show the enzyme in both the free form and covalently bound to CoA via Glu305. In the complex, the protein adopts a conformation in which residues 267-275, 280-287, 357-373, and 398-477 have shifted toward Glu305, closing the enzyme around the thioester. Enzymes provide catalysis by stabilizing the transition state relative to complexes with substrates or products. In this case, the conformational change allows the enzyme to interact with parts of CoA distant from the reactive thiol while the thiol is covalently linked to the enzyme. The enzyme forms stabilizing interactions with both the nucleotide and pantoic acid portions of CoA, while the interactions with the amide groups of the pantetheine portion are poor. The results shed light on how the enzyme uses the binding energy for groups remote from the active center of CoA to destabilize atoms closer to the active center, leading to acceleration of the reaction by the enzyme. << Less
Biochemistry 49:10319-10328(2010) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure of succinyl-CoA:3-ketoacid CoA transferase from Drosophila melanogaster.
Zhang M., Xu H.Y., Wang Y.C., Shi Z.B., Zhang N.N.
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) plays a crucial role in ketone-body metabolism. SCOT from Drosophila melanogaster (DmSCOT) was purified and crystallized. The crystal structure of DmSCOT was determined at 2.64 Å resolution and belonged to space group P212121, with unit-cell parameter ... >> More
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) plays a crucial role in ketone-body metabolism. SCOT from Drosophila melanogaster (DmSCOT) was purified and crystallized. The crystal structure of DmSCOT was determined at 2.64 Å resolution and belonged to space group P212121, with unit-cell parameters a=76.638, b=101.921, c=122.457 Å, α=β=γ=90°. Sequence alignment and structural analysis identified DmSCOT as a class I CoA transferase. Compared with Acetobacter aceti succinyl-CoA:acetate CoA transferase, DmSCOT has a different substrate-binding pocket, which may explain the difference in their substrate specificities. << Less
Acta Crystallogr. F Struct. Biol. Commun. 69:1089-1093(2013) [PubMed] [EuropePMC]
-
Enzymes of fatty acid metabolism. IV. Preparation and properties of coenzyme A transferase.
STERN J.R., COON M.J., DEL CAMPILLO A., SCHNEIDER M.C.
-
Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family.
Corthesy-Theulaz I.E., Bergonzelli G.E., Henry H., Bachmann D., Schorderet D.F., Blum A.L., Ornston L.N.
Sequencing of a fragment of Helicobacter pylori genome led to the identification of two open reading frames showing striking homology with Coenzyme A (CoA) transferases, enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The genes were present in all H. pylori s ... >> More
Sequencing of a fragment of Helicobacter pylori genome led to the identification of two open reading frames showing striking homology with Coenzyme A (CoA) transferases, enzymes catalyzing the reversible transfer of CoA from one carboxylic acid to another. The genes were present in all H. pylori strains tested by polymerase chain reaction or slot blotting but not in Campylobacter jejuni. Genes for the putative A and B subunits of H. pylori CoA-transferase were introduced into the bacterial expression vector pKK223-3 and expressed in Escherichia coli JM105 cells. Amino acid sequence comparisons, combined with measurements of enzyme activities using different CoA donors and acceptors, identified the H. pylori CoA-transferase as a succinyl CoA:acetoacetate CoA-transferase. This activity was consistently observed in different H. pylori strains. Antibodies raised against either recombinant A or B subunits recognized two distinct subunits of Mr approximately 26,000 and 24, 000 that are both necessary for H. pylori CoA-transferase function. The lack of alpha-ketoglutarate dehydrogenase and of succinyl CoA synthetase activities indicates that the generation of succinyl CoA is not mediated by the tricarboxylic acid cycle in H. pylori. We postulate the existence of an alternative pathway where the CoA-transferase is essential for energy metabolism. << Less
J. Biol. Chem. 272:25659-25667(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Enzymes of fatty acid metabolism.
LYNEN F., OCHOA S.
-
Identification of the cysteine residue exposed by the conformational change in pig heart succinyl-CoA:3-ketoacid coenzyme A transferase on binding coenzyme A.
Tammam S.D., Rochet J.C., Fraser M.E.
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), refl ... >> More
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT. << Less
Biochemistry 46:10852-10863(2007) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Enzymic synthesis and metabolism of malonyl coenzyme A and glutaryl coenzyme A.
MENON G.K., STERN J.R.