Reaction participants Show >> << Hide
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,284 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24440 | RHEA:24441 | RHEA:24442 | RHEA:24443 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Identification of a second Mycobacterium tuberculosis gene cluster encoding proteins of an ABC phosphate transporter.
Braibant M., Lefevre P., de Wit L., Ooms J., Peirs P., Huygen K., Wattiez R., Content J.
Following the identification of a M. tuberculosis phosphate transporter belonging to the superfamily of ABC transporters, we report on the cloning and sequencing of two additional genes, called pstS-3 and pstC-2, encoding proteins homologous to PstS and PstC of Escherichia coli, respectively. Toge ... >> More
Following the identification of a M. tuberculosis phosphate transporter belonging to the superfamily of ABC transporters, we report on the cloning and sequencing of two additional genes, called pstS-3 and pstC-2, encoding proteins homologous to PstS and PstC of Escherichia coli, respectively. Together with the previously isolated M. tuberculosis gene similar to the E. coli pstA, these are included in a cluster encoding a second putative phosphate transport system. We demonstrate that pstS-3 encodes the previously described Ag 88, a 40 kDa M. bovis BCG culture filtrate antigen (immunodominant in H-2b haplotype type mice). Finally, a signature motif identifying integral transmembrane proteins of prokaryotic phosphate binding-dependent permeases is proposed. << Less
-
Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices.
Webb D.C., Rosenberg H., Cox G.B.
The Escherichia coli Pst system is a periplasmic phosphate permease. A mutational analysis of the requirement for function of specific charged residues or proline residues in the two hydrophobic subunits (PstC and PstA) has been carried out. No residues, among 19 charged residues altered, were fou ... >> More
The Escherichia coli Pst system is a periplasmic phosphate permease. A mutational analysis of the requirement for function of specific charged residues or proline residues in the two hydrophobic subunits (PstC and PstA) has been carried out. No residues, among 19 charged residues altered, were found to be essential for phosphate uptake, although some alterations resulted in partial effects. Evidence was obtained that the 3 residues, R220 in the PstA protein and R237 and E241 in the PstC protein, previously shown to be required for phosphate transport (Cox, G. B., Webb, D., Godovac-Zimmermann, J., and Rosenberg, H. (1988) J. Bacteriol. 170, 2283-2286; Cox, G. B., Webb, D., and Rosenberg, H. (1989) J. Bacteriol. 171, 1531-1534), interact with each other. A feature of the proposed structures of the PstA and PstC proteins was 2 pairs of proline residues in putative transmembrane helices 3 and 4. While individual substitutions of these proline residues by leucine resulted in loss of phosphate transport activity substitution by alanine only had partial effects. However, if the proline to alanine changes were paired then, depending on the particular subunit, markedly different effects were obtained. The double mutation in the PstA protein resulted in a permanently "closed" system, whereas the double mutation in the PstC protein resulted in a permanently "open" transport system. << Less
-
Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases.
Kuan G., Dassa E., Saurin W., Hofnung M., Saier M.H. Jr.
Thirty-eight ATP-binding cassette (ABC) protein constituents of bacterial extracytoplasmic receptor-dependent nutrient uptake systems, including one homologous chloroplast protein were analysed for sequence conservation and phylogenetic relatedness. The proteins were generally found to cluster in ... >> More
Thirty-eight ATP-binding cassette (ABC) protein constituents of bacterial extracytoplasmic receptor-dependent nutrient uptake systems, including one homologous chloroplast protein were analysed for sequence conservation and phylogenetic relatedness. The proteins were generally found to cluster in accordance with the clustering patterns previously observed for the extracytoplasmic receptors and the transmembrane channel-forming constituents of these permeases. The results suggest that these transport systems evolved from a single primordial system with minimal shuffling of the three dissimilar protein constituents of the systems. << Less
Res Microbiol 146:271-278(1995) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.