Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline D-xylulose 5-phosphate Identifier CHEBI:57737 (Beilstein: 5752091) help_outline Charge -2 Formula C5H9O8P InChIKeyhelp_outline FNZLKVNUWIIPSJ-RFZPGFLSSA-L SMILEShelp_outline OCC(=O)[C@@H](O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 12 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline formaldehyde Identifier CHEBI:16842 (CAS: 50-00-0) help_outline Charge 0 Formula CH2O InChIKeyhelp_outline WSFSSNUMVMOOMR-UHFFFAOYSA-N SMILEShelp_outline [H]C([H])=O 2D coordinates Mol file for the small molecule Search links Involved in 141 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dihydroxyacetone Identifier CHEBI:16016 (CAS: 96-26-4) help_outline Charge 0 Formula C3H6O3 InChIKeyhelp_outline RXKJFZQQPQGTFL-UHFFFAOYSA-N SMILEShelp_outline C(CO)(CO)=O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glyceraldehyde 3-phosphate Identifier CHEBI:59776 (Beilstein: 6139851) help_outline Charge -2 Formula C3H5O6P InChIKeyhelp_outline LXJXRIRHZLFYRP-VKHMYHEASA-L SMILEShelp_outline [H]C(=O)[C@H](O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 33 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:24264 | RHEA:24265 | RHEA:24266 | RHEA:24267 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201.
Kato N., Higuchi T., Sakazawa C., Nishizawa T., Tani Y., Yamada H.
Dihydroxyacetone synthase, present in methanol-grown Candida boidinii (Kloeckera sp.) No. 2201, catalyzes the transfer of the glycolaldehyde group from xylulose 5-phosphate to formaldehyde to form glyceraldehyde 3-phosphate and dihydroxyacetone. This enzyme was purified to electrophoretic homogene ... >> More
Dihydroxyacetone synthase, present in methanol-grown Candida boidinii (Kloeckera sp.) No. 2201, catalyzes the transfer of the glycolaldehyde group from xylulose 5-phosphate to formaldehyde to form glyceraldehyde 3-phosphate and dihydroxyacetone. This enzyme was purified to electrophoretic homogeneity and found to be a new type of transketolase. The molecular weight of the enzyme was estimated to be 190,000 by gel filtration. The enzyme appeared to be composed of four identical subunits (Mr, 55,000). Thiamin pyrophosphate and Mg2+ were required for the activity. The optimum pH was found to be 7.0. With xylulose 5-phosphate as the ketol-donor, aliphatic aldehydes (C1-C7), glycolaldehyde and glyceraldehyde were better acceptors than ribose 5-phosphate. The kinetic data were consistent with a ping-pong bi-bi mechanism. The Km values obtained were as follows: xylulose 5-phosphate, 1.0 mM; formaldehyde, 0.43 mM; glyceraldehyde 3-phosphate, 0.42 mM; and dihydroxyacetone, 0.52 mM. << Less
-
[Separation of transketolase and dihydroxyacetone synthase from methylotrophic yeasts].
Bystrykh L.V., Sokolov A.P., Trotsenko I.u.A.
-
The interrelation transketolase and dihydroxyacetone synthase activities in the methylotrophic yeast Candida boidinii.
Waites M.J., Quayle J.R.
Crude extracts of Candida boidinii grown on glucose, xylose or ethanol gave single peaks of classical transketolase activity following chromatography, on columns of hydroxylapatite; the enzyme was heat-stable and showed no appreciable activity with formaldehyde as acceptor in place of ribose 5-pho ... >> More
Crude extracts of Candida boidinii grown on glucose, xylose or ethanol gave single peaks of classical transketolase activity following chromatography, on columns of hydroxylapatite; the enzyme was heat-stable and showed no appreciable activity with formaldehyde as acceptor in place of ribose 5-phosphate. Extracts of methanol-grown cells showed two peaks of transketolase activity following chromatography on both hydroxylapatite and DEAE-cellulose. One peak was identified with that found for the cells grown on substrates other than methanol; the other peak showed dihydroxyacetone synthase activity in addition to transketolase activity. Both activities in the latter peak were very unstable and have been ascribed to one enzyme on the basis of identical rates of denaturation at all temperatures tested between 0 and 40 degrees C. It is suggested that this enzyme is a special transketolase synthesized only during methylotrophic growth of the yeast and in contrast to classical transketolase, is capable of using equally well either formaldehyde or ribose 5-phosphate as glycolaldehyde acceptor. A method based on heat treatment has been suggested for the simultaneous assay of both transketolases present in crude extracts of a methylotrophically grown yeast. << Less