Reaction participants Show >> << Hide
-
Namehelp_outline
a 3'-end 3'-phospho-ribonucleotide-RNA
Identifier
RHEA-COMP:10463
Reactive part
help_outline
- Name help_outline a 3'-terminal ribonucleotide 3'-phosphate residue Identifier CHEBI:83062 Charge -3 Formula C5H7O9P2R SMILEShelp_outline O[C@H]1[C@H]([*])O[C@H](COP([O-])(-*)=O)[C@H]1OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Namehelp_outline
a 3'-end 2',3'-cyclophospho-ribonucleotide-RNA
Identifier
RHEA-COMP:10464
Reactive part
help_outline
- Name help_outline a 3'-terminal ribonucleotide 2',3'-cyclic phosphate residue Identifier CHEBI:83064 Charge -2 Formula C5H6O8P2R SMILEShelp_outline [O-]P(-*)(=O)OC[C@H]1O[C@@H]([*])[C@@H]2OP([O-])(=O)O[C@H]12 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline AMP Identifier CHEBI:456215 Charge -2 Formula C10H12N5O7P InChIKeyhelp_outline UDMBCSSLTHHNCD-KQYNXXCUSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 508 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,129 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23976 | RHEA:23977 | RHEA:23978 | RHEA:23979 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
RNA 3'-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract.
Filipowicz W., Konarska M., Gross H.J., Shatkin A.J.
HeLa cell extract contains RNA ligase activity that converts linear polyribonucleotides to covalently closed circles. RNA substrates containing 2',3'-cyclic phosphate and 5'-hydroxyl termini are circularized by formation of a normal 3',5' phosphodiester bond. This activity differs from a previousl ... >> More
HeLa cell extract contains RNA ligase activity that converts linear polyribonucleotides to covalently closed circles. RNA substrates containing 2',3'-cyclic phosphate and 5'-hydroxyl termini are circularized by formation of a normal 3',5' phosphodiester bond. This activity differs from a previously described wheat germ RNA ligase which circularizes molecules with 2',3'-cyclic and 5' phosphate ends by a 2'-phosphomonester, 3',5'-phosphodiester linkage (Konarska et al., Nature 293, 112-116, 1981; Proc. Natl. Acad. Sci. USA 79, 1474-1478, 1982). The HeLa cell ligase can also utilize molecules with 3'-phosphate ends. However, in this case ligation is preceded by an ATP-dependent conversion of the 3'-terminal phosphate to the 2',3' cyclic form by a novel activity, RNA 3'-terminal phosphate cyclase. Both RNA ligase and RNA 3'-terminal phosphate cyclase activities are also present in extract of Xenopus oocyte nuclei, consistent with a role in RNA processing. << Less
-
Structures of RNA 3'-phosphate cyclase bound to ATP reveal the mechanism of nucleotidyl transfer and metal-assisted catalysis.
Chakravarty A.K., Smith P., Shuman S.
RNA 3'-phosphate cyclase (RtcA) synthesizes RNA 2',3' cyclic phosphate ends via three steps: reaction with ATP to form a covalent RtcA-(histidinyl-Nε)-AMP intermediate; transfer of adenylate to an RNA 3'-phosphate to form RNA(3')pp(5')A; and attack of the vicinal O2' on the 3'-phosphorus to form a ... >> More
RNA 3'-phosphate cyclase (RtcA) synthesizes RNA 2',3' cyclic phosphate ends via three steps: reaction with ATP to form a covalent RtcA-(histidinyl-Nε)-AMP intermediate; transfer of adenylate to an RNA 3'-phosphate to form RNA(3')pp(5')A; and attack of the vicinal O2' on the 3'-phosphorus to form a 2',3' cyclic phosphate and release AMP. Here we report the crystal structures of RtcA•ATP, RtcA•ATP•Mn(2+), and RtcA•ATP•Co(2+) substrate complexes and an RtcA•AMP product complex. Together with the structures of RtcA apoenzyme and the covalent RtcA-AMP intermediate, they illuminate the mechanism of nucleotidyl transfer, especially the stereochemical transitions at the AMP phosphate, the critical role of the metal in orienting the PP(i) leaving group of ATP during step 1, and the protein conformational switches that accompany substrate binding and product release. The octahedral metal complex of RtcA•ATP•Mn(2+) includes nonbridging oxygens from each of the ATP phosphates, two waters, and Glu14 as the sole RtcA component. Whereas the RtcA adenylylation step is metal-catalyzed, the subsequent steps in the cyclization pathway are metal-independent. << Less
Proc Natl Acad Sci U S A 108:21034-21039(2011) [PubMed] [EuropePMC]
-
The enzymatic conversion of 3'-phosphate terminated RNA chains to 2',3'-cyclic phosphate derivatives.
Reinberg D., Arenas J., Hurwitz J.
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) an ... >> More
The enzyme, RNA cyclase, has been purified from cell-free extracts of HeLa cells approximately 6000-fold. The enzyme catalyzes the conversion of 3'-phosphate ends of RNA chains to the 2',3'-cyclic phosphate derivative in the presence of ATP or adenosine 5'-(gamma-thio)triphosphate (ATP gamma S) and Mg2+. The formation of 1 mol of 2',3'-cyclic phosphate ends is associated with the disappearance of 1 mol of 3'-phosphate termini and the hydrolysis of 1 mol of ATP gamma S to AMP and thiopyrophosphate. No other nucleotides could substitute for ATP or ATP gamma S in the reaction. The reaction catalyzed by RNA cyclase was not reversible and exchange reactions between [32P]pyrophosphate and ATP were not detected. However, an enzyme-AMP intermediate could be identified that was hydrolyzed by the addition of inorganic pyrophosphate or 3'-phosphate terminated RNA chains but not by 3'-OH terminated chains or inorganic phosphate. 3'-[32P](Up)10Gp* could be converted to a form that yielded, (Formula: see text) after degradation with nuclease P1, by the addition of wheat germ RNA ligase, 5'-hydroxylpolynucleotide kinase, RNA cyclase, and ATP. This indicates that the RNA cyclase had catalyzed the formation of the 2',3'-cyclic phosphate derivative, the kinase had phosphorylated the 5'-hydroxyl end of the RNA, and the wheat germ RNA ligase had catalyzed the formation of a 3',5'-phosphodiester linkage concomitant with the conversion of the 2',3'-cyclic end to a 2'-phosphate terminated residue. << Less