Enzymes
UniProtKB help_outline | 1,001 proteins |
Reaction participants Show >> << Hide
- Name help_outline cis-stilbene oxide Identifier CHEBI:50004 (Beilstein: 82737; CAS: 1689-71-0) help_outline Charge 0 Formula C14H12O InChIKeyhelp_outline ARCJQKUWGAZPFX-OKILXGFUSA-N SMILEShelp_outline O1[C@@H]([C@@H]1c1ccccc1)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (1R,2R)-hydrobenzoin Identifier CHEBI:50014 (Beilstein: 2050815) help_outline Charge 0 Formula C14H14O2 InChIKeyhelp_outline IHPDTPWNFBQHEB-ZIAGYGMSSA-N SMILEShelp_outline O[C@@H]([C@H](O)c1ccccc1)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23900 | RHEA:23901 | RHEA:23902 | RHEA:23903 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Epoxide hydrolases: biochemistry and molecular biology.
Fretland A.J., Omiecinski C.J.
Epoxides are organic three-membered oxygen compounds that arise from oxidative metabolism of endogenous, as well as xenobiotic compounds via chemical and enzymatic oxidation processes, including the cytochrome P450 monooxygenase system. The resultant epoxides are typically unstable in aqueous envi ... >> More
Epoxides are organic three-membered oxygen compounds that arise from oxidative metabolism of endogenous, as well as xenobiotic compounds via chemical and enzymatic oxidation processes, including the cytochrome P450 monooxygenase system. The resultant epoxides are typically unstable in aqueous environments and chemically reactive. In the case of xenobiotics and certain endogenous substances, epoxide intermediates have been implicated as ultimate mutagenic and carcinogenic initiators Adams et al. (Chem. Biol. Interact. 95 (1995) 57-77) Guengrich (Properties and Metabolic roles 4 (1982) 5-30) Sayer et al. (J. Biol. Chem. 260 (1985) 1630-1640). Therefore, it is of vital importance for the biological organism to regulate levels of these reactive species. The epoxide hydrolases (E.C. 3.3.2. 3) belong to a sub-category of a broad group of hydrolytic enzymes that include esterases, proteases, dehalogenases, and lipases Beetham et al. (DNA Cell Biol. 14 (1995) 61-71). In particular, the epoxide hydrolases are a class of proteins that catalyze the hydration of chemically reactive epoxides to their corresponding dihydrodiol products. Simple epoxides are hydrated to their corresponding vicinal dihydrodiols, and arene oxides to trans-dihydrodiols. In general, this hydration leads to more stable and less reactive intermediates, however exceptions do exist. In mammalian species, there are at least five epoxide hydrolase forms, microsomal cholesterol 5,6-oxide hydrolase, hepoxilin A(3) hydrolase, leukotriene A(4) hydrolase, soluble, and microsomal epoxide hydrolase. Each of these enzymes is distinct chemically and immunologically. Table 1 illustrates some general properties for each of these classes of hydrolases. Fig. 1 provides an overview of selected model substrates for each class of epoxide hydrolase. << Less
Chem Biol Interact 129:41-59(2000) [PubMed] [EuropePMC]
This publication is cited by 4 other entries.
-
Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles.
Morisseau C., Hammock B.D.
Organisms are exposed to epoxide-containing compounds from both exogenous and endogenous sources. In mammals, the hydration of these compounds by various epoxide hydrolases (EHs) can not only regulate their genotoxicity but also, for lipid-derived epoxides, their endogenous roles as chemical media ... >> More
Organisms are exposed to epoxide-containing compounds from both exogenous and endogenous sources. In mammals, the hydration of these compounds by various epoxide hydrolases (EHs) can not only regulate their genotoxicity but also, for lipid-derived epoxides, their endogenous roles as chemical mediators. Recent findings suggest that the EHs as a family represent novel drug discovery targets for regulation of blood pressure, inflammation, cancer progression, and the onset of several other diseases. Knowledge of the EH mechanism provides a solid foundation for the rational design of inhibitors, and this review summarizes the current understanding of the catalytic mechanism of the EHs. Although the overall EH mechanism is now known, the molecular basis of substrate selectivity, possible allosteric regulation, and many fine details of the catalytic mechanism remain to be solved. Finally, recent development in the design of EH inhibitors and the EH biological role are discussed. << Less
Annu Rev Pharmacol Toxicol 45:311-333(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Epoxide hydrolases: their roles and interactions with lipid metabolism.
Newman J.W., Morisseau C., Hammock B.D.
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of infl ... >> More
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated. << Less
Prog Lipid Res 44:1-51(2005) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases.
Summerer S., Hanano A., Utsumi S., Arand M., Schuber F., Blee E.
cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to appa ... >> More
cis-9,10-epoxystearic acid was used as a tool to probe the active sites of epoxide hydrolases (EHs) of mammalian and plant origin. We have compared the stereochemical features of the hydrolysis of this substrate catalysed by soluble and membrane-bound rat liver EHs, by soluble EH (purified to apparent homogeneity) obtained from maize seedlings or celeriac roots, and by recombinant soybean EH expressed in yeast. Plant EHs were found to differ in their enantioselectivity, i.e. their ability to discriminate between the two enantiomers of 9,10-epoxystearic acid. For example, while the maize enzyme hydrated both enantiomers at the same rate, the EH from soybean exhibited very high enantioselectivity in favour of 9R,10S-epoxystearic acid. This latter enzyme also exhibited a strict stereoselectivity, i.e. it hydrolysed the racemic substrate with a very high enantioconvergence, yielding a single chiral diol product, threo-9R,10R-dihydroxystearic acid. Soybean EH shared these distinctive stereochemical features with the membrane-bound rat liver EH. The stereochemical outcome of these enzymes probably results from a stereoselective attack by the nucleophilic residue on the oxirane ring carbon having the (S)-configuration, leading to the presumed (in plant EH) covalent acyl-enzyme intermediate. In sharp contrast, the reactions catalysed by cytosolic rat liver EH exhibited a complete absence of enantioselectivity and enantioconvergence; this latter effect might be ascribed to a regioselective formation of the acyl-enzyme intermediate involving C-10 of 9,10-epoxystearic acid, independent of its configuration. Thus, compared with soybean EH, the active site of rat liver soluble EH displays a very distinct means of anchoring the oxirane ring of the fatty acid epoxides, and therefore appears to be a poor model for mapping the catalytic domain of plant EHs. << Less
-
Cloning, partial purification and in vivo developmental profile of expression of the juvenile hormone epoxide hydrolase of Ctenocephalides felis.
Keiser K.C.L., Brandt K.S., Silver G.M., Wisnewski N.
cDNAs encoding two different epoxide hydrolases (nCfEH1 and nCfEH2) were cloned from a cDNA library prepared from the wandering larval stage of the cat flea, Ctenocephalides felis. Predicted translations of the open reading frames indicated the clones encoded proteins of 464 (CfEH1) and 465 (CfEH2 ... >> More
cDNAs encoding two different epoxide hydrolases (nCfEH1 and nCfEH2) were cloned from a cDNA library prepared from the wandering larval stage of the cat flea, Ctenocephalides felis. Predicted translations of the open reading frames indicated the clones encoded proteins of 464 (CfEH1) and 465 (CfEH2) amino acids. These proteins have a predicted molecular weight of 53 kDa and a putative 22 amino acid N-terminal hydrophobic membrane anchor. The amino acid sequences are 77% identical, and both are homologous to previously isolated epoxide hydrolases from Manduca sexta, Trichoplusia ni, and Rattus norvegicus. Purification of native juvenile hormone epoxide hydrolase (JHEH) from unfed adult cat fleas generated a partially pure protein that hydrolyzed juvenile hormone III to juvenile hormone III-diol. The amino terminal sequence of this;50-kDa protein is identical to the deduced amino terminus of the protein encoded by the nCfEH1 clone. Affinity-purified rabbit polyclonal antibodies raised against Escherichia coli-expressed HisCfEH1 recognized a approximately 50-kDa protein present in the partially purified fraction containing JHEH activity. Immunohistochemistry experiments using the same affinity-purified rabbit polyclonal antibodies localized the epoxide hydrolase in developing oocytes, fat body, and midgut epithelium of the adult flea. The presence of JHEH in various flea life stages and tissues was assessed by Northern blot and enzymatic activity assays. JHEH mRNA expression remained relatively constant throughout the different flea larval stages and was slightly elevated in the unfed adult flea. JHEH enzymatic activity was highest in the late larval, pupal, and adult stages. In all stages and tissues examined, JHEH activity was significantly lower than juvenile hormone esterase (JHE) activity, the other enzyme responsible for JH catalysis. << Less
Arch. Insect Biochem. Physiol. 50:191-206(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Molecular and biochemical characterization of juvenile hormone epoxide hydrolase from the silkworm, Bombyx mori.
Zhang Q.R., Xu W.H., Chen F.S., Li S.
One major route of insect juvenile hormone (JH) degradation is epoxide hydration by JH epoxide hydrolase (JHEH). A full-length cDNA (1536 bp) encoding a microsomal JHEH was isolated from the silkworm, Bombyx mori. Bommo-JHEH cDNA contains an open reading frame encoding a 461-amino acid protein (52 ... >> More
One major route of insect juvenile hormone (JH) degradation is epoxide hydration by JH epoxide hydrolase (JHEH). A full-length cDNA (1536 bp) encoding a microsomal JHEH was isolated from the silkworm, Bombyx mori. Bommo-JHEH cDNA contains an open reading frame encoding a 461-amino acid protein (52 kDa), which reveals a high degree of similarity to the previously reported insect JHEHs. The residues Tyr298, Tyr373, and the HGWP motif corresponding to the oxyanion hole of JHEHs and the residues Asp227, His430, and Glu403 in the catalytic triad are well conserved in Bommo-JHEH. Bommo-JHEH was highly expressed in the fat body, where its mRNA expression pattern was in contrast to the pattern of hemolymph levels of JH during the larval development, suggesting that Bommo-JHEH plays an important role in JH degradation. Recombinant Bommo-JHEH (52 kDa) expressed in Sf9 insect cells was membrane-bound and had a high level of enzyme activity (300-fold over the control activity). This Bommo-JHEH study provides a better understanding of how JH levels are regulated in the domesticated silkworm. << Less
Insect Biochem. Mol. Biol. 35:153-164(2005) [PubMed] [EuropePMC]