Reaction participants Show >> << Hide
- Name help_outline 3-(2,3-dihydroxyphenyl)propanoate Identifier CHEBI:46951 (Beilstein: 7374461) help_outline Charge -1 Formula C9H9O4 InChIKeyhelp_outline QZDSXQJWBGMRLU-UHFFFAOYSA-M SMILEShelp_outline Oc1cccc(CCC([O-])=O)c1O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (2Z,4E)-2-hydroxy-6-oxonona-2,4-dienedioate Identifier CHEBI:66887 Charge -2 Formula C9H8O6 InChIKeyhelp_outline RFENOVFRMPRRJI-YDCWOTKKSA-L SMILEShelp_outline O\C(=C/C=C/C(=O)CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23840 | RHEA:23841 | RHEA:23842 | RHEA:23843 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Acid-base catalysis in the extradiol catechol dioxygenase reaction mechanism: site-directed mutagenesis of His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB).
Mendel S., Arndt A., Bugg T.D.H.
The extradiol catechol dioxygenases catalyze the non-heme iron(II)-dependent oxidative cleavage of catechols to 2-hydroxymuconaldehyde products. Previous studies of a biomimetic model reaction for extradiol cleavage have highlighted the importance of acid-base catalysis for this reaction. Two cons ... >> More
The extradiol catechol dioxygenases catalyze the non-heme iron(II)-dependent oxidative cleavage of catechols to 2-hydroxymuconaldehyde products. Previous studies of a biomimetic model reaction for extradiol cleavage have highlighted the importance of acid-base catalysis for this reaction. Two conserved histidine residues were identified in the active site of the class III extradiol dioxygenases, positioned within 4-5 A of the iron(II) cofactor. His-115 and His-179 in Escherichia coli 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) were replaced by glutamine, alanine, and tyrosine. Each mutant enzyme was catalytically inactive for extradiol cleavage, indicating the essential nature of these acid-base residues. Replacement of neighboring residues Asp-114 and Pro-181 gave D114N, P181A, and P181H mutant enzymes with reduced catalytic activity and altered pH/rate profiles, indicating the role of His-179 as a base and His-115 as an acid. Mutant H179Q was catalytically active for the lactone hydrolysis half-reaction, whereas mutant H115Q was inactive, implying a role for His-115 in lactone hydrolysis. A catalytic mechanism involving His-179 and His-115 as acid-base catalytic residues is proposed. << Less
-
Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases.
Spence E.L., Kawamukai M., Sanvoisin J., Braven H., Bugg T.D.H.
The nucleotide sequence of the Escherichia coli mhpB gene, encoding 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, was determined by sequencing of a 3.1-kb fragment of DNA from Kohara phage 139. The inferred amino acid sequence showed 58% sequence identity with the sequence of an extradiol dioxyge ... >> More
The nucleotide sequence of the Escherichia coli mhpB gene, encoding 2,3-dihydroxyphenylpropionate 1,2-dioxygenase, was determined by sequencing of a 3.1-kb fragment of DNA from Kohara phage 139. The inferred amino acid sequence showed 58% sequence identity with the sequence of an extradiol dioxygenase, MpcI, from Alcaligenes eutrophus and 10 to 20% sequence identity with protocatechuate 4,5-dioxygenase from Pseudomonas paucimobilis, with 3,4-dihydroxyphenylacetate 2,3-dioxygenase from E. coli, and with human 3-hydroxyanthranilate dioxygenase. Sequence similarity between the N- and C-terminal halves of this new family of dioxygenases was detected, with conserved histidine residues in the N-terminal domain. A model is proposed to account for the relationship between this family of enzymes and other extradiol dioxygenases. The A. eutrophus MpcI enzyme was expressed in E. coli, purified, and characterized as a protein with a subunit size of 33.8 kDa. Purified MhpB and MpcI showed similar substrate specificities for a range of 3-substituted catechols, and evidence for essential histidine and cysteine residues in both enzymes was obtained. << Less
-
Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12.
Ferrandez A., Garcia J.L., Diaz E.
We report the complete nucleotide sequence of the gene cluster encoding the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway of Escherichia coli K-12. Sequence analysis revealed the existence of eight genes that map at min 8 of the chromosome, between the lac and hemB regions. Six enzyme-en ... >> More
We report the complete nucleotide sequence of the gene cluster encoding the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway of Escherichia coli K-12. Sequence analysis revealed the existence of eight genes that map at min 8 of the chromosome, between the lac and hemB regions. Six enzyme-encoding genes account for a flavin-type monooxygenase (mhpA), the extradiol dioxygenase (mhpB), and the meta-cleavage pathway (mhpCDFE). The order of these catabolic genes, with the sole exception of mhpF, parallels that of the enzymatic steps of the pathway. The mhpF gene may encode the terminal acetaldehyde dehydrogenase (acylating) not reported previously in the proposed pathway. Enzymes that catalyze the early reactions of the pathway, MhpA and MhpB, showed the lowest level of sequence similarity to analogous enzymes of other aromatic catabolic pathways. However, the genes mhpCDFE present the same organization and appear to be homologous to the Pseudomonas xyl, dmp, and nah meta-pathway genes, supporting the hypothesis of the modular evolution of catabolic pathways and becoming the first example of this type of catabolic module outside the genus Pseudomonas. Two bacterial interspersed mosaic elements were found downstream of the mhpABCDFE locus and flank a gene, orfT, which encodes a protein related to the superfamily of transmembrane facilitators that might be associated with transport. All of the genes of the 3-HPP cluster are transcribed in the same direction, with the sole exception of mhpR. Inducible expression of the mhp catabolic genes depends upon the presence, in the cis or trans position, of a functional mhpR gene, which suggests that the mhpR gene product is the activator of the 3-HPP biodegradative pathway. The primary structure of MhpR revealed significant similarities to that of members of the IclR subfamily of transcriptional regulators. A 3-HPP catabolic DNA cassette was engineered and shown to be functional not only in enteric bacteria (E. coli and Salmonella typhimurium) but also in Pseudomonas putida and Rhizobium meliloti, thus facilitating its potential application to improve the catabolic abilities of bacterial strains for degradation of aromatic compounds. << Less
J. Bacteriol. 179:2573-2581(1997) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Characterization of the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid in Escherichia coli K-12.
Diaz E., Ferrandez A., Garcia J.L.
We have identified, cloned, and sequenced the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid (PP) in Escherichia coli K-12. This cluster maps at min 57.5 of the chromosome and is composed of five catabolic genes arranged as a putative operon (hcaA1 ... >> More
We have identified, cloned, and sequenced the hca cluster encoding the dioxygenolytic pathway for initial catabolism of 3-phenylpropionic acid (PP) in Escherichia coli K-12. This cluster maps at min 57.5 of the chromosome and is composed of five catabolic genes arranged as a putative operon (hcaA1A2CBD) and two additional genes transcribed in the opposite direction that encode a potential permease (hcaT) and a regulator (hcaR). Sequence comparisons revealed that while hcaA1A2CD genes encode the four subunits of the 3-phenylpropionate dioxygenase, the hcaB gene codes for the corresponding cis-dihydrodiol dehydrogenase. This type of catabolic module is homologous to those encoding class IIB dioxygenases and becomes the first example of such a catabolic cluster in E. coli. The inducible expression of the hca genes requires the presence of the hcaR gene product, which acts as a transcriptional activator and shows significant sequence similarity to members of the LysR family of regulators. Interestingly, the HcaA1A2CD and HcaB enzymes are able to oxidize not only PP to 3-(2,3-dihydroxyphenyl)propionate (DHPP) but also cinnamic acid (CI) to its corresponding 2, 3-dihydroxy derivative. Further catabolism of DHPP requires the mhp-encoded meta fission pathway for the mineralization of 3-hydroxyphenylpropionate (3HPP) (A. Ferrández, J. L. García, and E. Díaz, J. Bacteriol. 179:2573-2581, 1997). Expression in Salmonella typhimurium of the mhp genes alone or in combination with the hca cluster allowed the growth of the recombinant bacteria in 3-hydroxycinnamic acid (3HCI) and CI, respectively. Thus, the convergent mhp- and hca-encoded pathways are also functional in S. typhimurium, and they are responsible for the catabolism of different phenylpropanoid compounds (3HPP, 3HCI, PP, and CI) widely available in nature. << Less
J. Bacteriol. 180:2915-2923(1998) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.