Reaction participants Show >> << Hide
- Name help_outline GDP-α-D-mannose Identifier CHEBI:57527 (Beilstein: 6630718) help_outline Charge -2 Formula C16H23N5O16P2 InChIKeyhelp_outline MVMSCBBUIHUTGJ-GDJBGNAASA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 54 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GDP-4-dehydro-α-D-rhamnose Identifier CHEBI:57964 Charge -2 Formula C16H21N5O15P2 InChIKeyhelp_outline PNHLMHWWFOPQLK-BKUUWRAGSA-L SMILEShelp_outline C[C@H]1O[C@H](OP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c2nc(N)[nH]c3=O)[C@@H](O)[C@@H](O)C1=O 2D coordinates Mol file for the small molecule Search links Involved in 9 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23820 | RHEA:23821 | RHEA:23822 | RHEA:23823 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline | ||||
Reactome help_outline |
Publications
-
Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro.
Sullivan F.X., Kumar R., Kriz R., Stahl M., Xu G.-Y., Rouse J., Chang X.J., Boodhoo A., Potvin B., Cumming D.A.
We have cloned the cDNA encoding human GDP-mannose 4,6-dehydratase, the first enzyme in the pathway converting GDP-mannose to GDP-fucose. The message is expressed in all tissues and cell lines examined, and the cDNA complements Lec13, a Chinese Hamster Ovary cell line deficient in GDP-mannose 4,6- ... >> More
We have cloned the cDNA encoding human GDP-mannose 4,6-dehydratase, the first enzyme in the pathway converting GDP-mannose to GDP-fucose. The message is expressed in all tissues and cell lines examined, and the cDNA complements Lec13, a Chinese Hamster Ovary cell line deficient in GDP-mannose 4,6-dehydratase activity. The human GDP-mannose 4,6-dehydratase polypeptide shares 61% identity with the enzyme from Escherichia coli, suggesting broad evolutionary conservation. Purified recombinant enzyme utilizes NADP+ as a cofactor and, like its E. coli counterpart, is inhibited by GDP-fucose, suggesting that this aspect of regulation is also conserved. We have isolated the product of the dehydratase reaction, GDP-4-keto-6-deoxymannose, and confirmed its structure by electrospray ionization-mass spectrometry and high field NMR. Using purified recombinant human GDP-mannose 4,6-dehydratase and FX protein (GDP-keto-6-deoxymannose 3,5-epimerase, 4-reductase), we show that the two proteins alone are sufficient to convert GDP-mannose to GDP-fucose in vitro. This unequivocally demonstrates that the epimerase and reductase activities are on a single polypeptide. Finally, we show that the two homologous enzymes from E. coli are sufficient to carry out the same enzymatic pathway in bacteria. << Less
-
Purification of guanosine 5'-diphosphate D-mannose oxidoreductase from Phaseolus vulgaris.
Liao T.H., Barber G.A.
-
Structure of the MUR1 GDP-mannose 4,6-dehydratase from Arabidopsis thaliana: implications for ligand binding and specificity.
Mulichak A.M., Bonin C.P., Reiter W.-D., Garavito R.M.
GDP-D-mannose 4,6-dehydratase catalyzes the first step in the de novo synthesis of GDP-L-fucose, the activated form of L-fucose, which is a component of glycoconjugates in plants known to be important to the development and strength of stem tissues. We have determined the three-dimensional structu ... >> More
GDP-D-mannose 4,6-dehydratase catalyzes the first step in the de novo synthesis of GDP-L-fucose, the activated form of L-fucose, which is a component of glycoconjugates in plants known to be important to the development and strength of stem tissues. We have determined the three-dimensional structure of the MUR1 dehydratase isoform from Arabidopsis thaliana complexed with its NADPH cofactor as well as with the ligands GDP and GDP-D-rhamnose. MUR1 is a member of the nucleoside-diphosphosugar modifying subclass of the short-chain dehydrogenase/reductase enzyme family, having homologous structures and a conserved catalytic triad of Lys, Tyr, and Ser/Thr residues. MUR1 is the first member of this subfamily to be observed as a tetramer, the interface of which reveals a close and intimate overlap of neighboring NADP(+)-binding sites. The GDP moiety of the substrate also binds in an unusual syn conformation. The protein-ligand interactions around the hexose moiety of the substrate support the importance of the conserved triad residues and an additional Glu side chain serving as a general base for catalysis. Phe and Arg side chains close to the hexose ring may serve to confer substrate specificity at the O2 position. In the MUR1/GDP-D-rhamnose complex, a single unique monomer within the protein tetramer that has an unoccupied substrate site highlights the conformational changes that accompany substrate binding and may suggest the existence of negative cooperativity in MUR1 function. << Less
-
Identification of two GDP-6-deoxy-D-lyxo-4-hexulose reductases synthesizing GDP-D-rhamnose in Aneurinibacillus thermoaerophilus L420-91T.
Kneidinger B., Graninger M., Adam G., Puchberger M., Kosma P., Zayni S., Messner P.
The glycan repeats of the surface layer glycoprotein of Aneurinibacillus thermoaerophilus L420-91T contain d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose, both of which are also constituents of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria. The two genes required for ... >> More
The glycan repeats of the surface layer glycoprotein of Aneurinibacillus thermoaerophilus L420-91T contain d-rhamnose and 3-acetamido-3,6-dideoxy-d-galactose, both of which are also constituents of lipopolysaccharides of Gram-negative plant and human pathogenic bacteria. The two genes required for biosynthesis of the nucleotide-activated precursor GDP-d-rhamnose, gmd and rmd, were cloned, sequenced, and overexpressed in Escherichia coli. The corresponding enzymes Gmd and Rmd were purified to homogeneity, and functional studies were performed. GDP-d-mannose dehydratase (Gmd) converted GDP-d-mannose to GDP-6-deoxy-d-lyxo-4-hexulose, with NADP+ as cofactor. The reductase Rmd catalyzed the second step in the pathway, namely the reduction of the keto-intermediate to the final product GDP-d-rhamnose using both NADH and NADPH as hydride donor. The elution behavior of the intermediate and end product was analyzed by high performance liquid chromatography. Nuclear magnetic resonance spectroscopy was used to identify the structure of the final product of the reaction sequence as GDP-alpha-d-rhamnose. This is the first characterization of a GDP-6-deoxy-d-lyxo-4-hexulose reductase. In addition, Gmd has been shown to be a bifunctional enzyme with both dehydratase and reductase activities. So far, no enzyme catalyzing these two types of reactions has been identified. Both Gmd and Rmd are members of the SDR (short chain dehydrogenase/reductase) protein family. << Less
J. Biol. Chem. 276:5577-5583(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
THE BIOSYNTHESIS OF CELL WALL LIPOPOLYSACCHARIDE IN ESCHERICHIA COLI. II. GUANOSINE DIPHOSPHATE 4-KETO-6-DEOXY-D-MANNOSE, AN INTERMEDIATE IN THE BIOSYNTHESIS OF GUANOSINE DIPHOSPHATE COLITOSE.
ELBEIN A.D., HEATH E.C.
-
The mechanism of 6-deoxyhexose synthesis. I. Intramolecular hydrogen transfer catalyzed by deoxythymidine diphosphate D-glucose oxidoreductase.
Melo A., Elliott W.H., Glaser L.
J Biol Chem 243:1467-1474(1968) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.