Reaction participants Show >> << Hide
- Name help_outline myo-inositol Identifier CHEBI:17268 (Beilstein: 1907329; CAS: 87-89-8) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline CDAISMWEOUEBRE-GPIVLXJGSA-N SMILEShelp_outline O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline D-glucuronate Identifier CHEBI:58720 (Beilstein: 4189951) help_outline Charge -1 Formula C6H9O7 InChIKeyhelp_outline AEMOLEFTQBMNLQ-AQKNRBDQSA-M SMILEShelp_outline OC1O[C@@H]([C@@H](O)[C@H](O)[C@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23696 | RHEA:23697 | RHEA:23698 | RHEA:23699 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
An oxygen-18 tracer investigation of the mechanism of myo-inositol oxygenase.
Moskala R., Reddy C.C., Minard R.D., Hamilton G.A.
Biochem Biophys Res Commun 99:107-113(1981) [PubMed] [EuropePMC]
-
Structural and biophysical characterization of human myo-inositol oxygenase.
Thorsell A.G., Persson C., Voevodskaya N., Busam R.D., Hammarstrom M., Graslund S., Graslund A., Hallberg B.M.
Altered inositol metabolism is implicated in a number of diabetic complications. The first committed step in mammalian inositol catabolism is performed by myo-inositol oxygenase (MIOX), which catalyzes a unique four-electron dioxygen-dependent ring cleavage of myo-inositol to D-glucuronate. Here, ... >> More
Altered inositol metabolism is implicated in a number of diabetic complications. The first committed step in mammalian inositol catabolism is performed by myo-inositol oxygenase (MIOX), which catalyzes a unique four-electron dioxygen-dependent ring cleavage of myo-inositol to D-glucuronate. Here, we present the crystal structure of human MIOX in complex with myo-inosose-1 bound in a terminal mode to the MIOX diiron cluster site. Furthermore, from biochemical and biophysical results from N-terminal deletion mutagenesis we show that the N terminus is important, through coordination of a set of loops covering the active site, in shielding the active site during catalysis. EPR spectroscopy of the unliganded enzyme displays a two-component spectrum that we can relate to an open and a closed active site conformation. Furthermore, based on site-directed mutagenesis in combination with biochemical and biophysical data, we propose a novel role for Lys(127) in governing access to the diiron cluster. << Less
-
Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism.
Brown P.M., Caradoc-Davies T.T., Dickson J.M., Cooper G.J., Loomes K.M., Baker E.N.
Altered metabolism of the inositol sugars myo-inositol (MI) and d-chiro-inositol is implicated in diabetic complications. In animals, catabolism of MI and D-chiro-inositol depends on the enzyme MI oxygenase (MIOX), which catalyzes the first committed step of the glucuronate-xylulose pathway, and i ... >> More
Altered metabolism of the inositol sugars myo-inositol (MI) and d-chiro-inositol is implicated in diabetic complications. In animals, catabolism of MI and D-chiro-inositol depends on the enzyme MI oxygenase (MIOX), which catalyzes the first committed step of the glucuronate-xylulose pathway, and is found almost exclusively in the kidneys. The crystal structure of MIOX, in complex with MI, has been determined by multiwavelength anomalous diffraction methods and refined at 2.0-A resolution (R=0.206, Rfree=0.253). The structure reveals a monomeric, single-domain protein with a mostly helical fold that is distantly related to the diverse HD domain superfamily. Five helices form the structural core and provide six ligands (four His and two Asp) for the di-iron center, in which the two iron atoms are bridged by a putative hydroxide ion and one of the Asp ligands, Asp-124. A key loop forms a lid over the MI substrate, which is coordinated in bidentate mode to one iron atom. It is proposed that this mode of iron coordination, and interaction with a key Lys residue, activate MI for bond cleavage. The structure also reveals the basis of substrate specificity and suggests routes for the development of specific MIOX inhibitors. << Less
Proc. Natl. Acad. Sci. U.S.A. 103:15032-15037(2006) [PubMed] [EuropePMC]