Reaction participants Show >> << Hide
- Name help_outline a ribonucleoside 5'-triphosphate Identifier CHEBI:61557 Charge -4 Formula C5H8O13P3R SMILEShelp_outline [C@H]1([C@H]([C@@H](O)[C@@H](O1)*)O)COP(OP(OP(=O)([O-])[O-])(=O)[O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 1,505 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a ribonucleoside 5'-diphosphate Identifier CHEBI:57930 Charge -3 Formula C5H8O10P2R SMILEShelp_outline [C@H]1([C@H]([C@@H](O)[C@@H](O1)*)O)COP(OP([O-])(=O)[O-])(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 1,644 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23680 | RHEA:23681 | RHEA:23682 | RHEA:23683 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Lysosomal acid pyrophosphatase and acid phosphatase.
Brightwell R., Tappel A.L.
-
Purification and properties of human placental ATP diphosphohydrolase.
Christoforidis S., Papamarcaki T., Galaris D., Kellner R., Tsolas O.
ATP diphosphohydrolase activity (ATP-DPH) has been previously identified in the particulate fraction of human term placenta [Papamarcaki, T. & Tsolas, O. (1990) Mol. Cell. Biochem. 97, 1-8]. In the present study we have purified to homogeneity and characterized this activity. A 260-fold purificati ... >> More
ATP diphosphohydrolase activity (ATP-DPH) has been previously identified in the particulate fraction of human term placenta [Papamarcaki, T. & Tsolas, O. (1990) Mol. Cell. Biochem. 97, 1-8]. In the present study we have purified to homogeneity and characterized this activity. A 260-fold purification has been obtained by solubilization of the particulate fraction and subsequent chromatography on DEAE Sepharose CL-6B and 5'-AMP Sepharose 4B. The preparation has been shown to be free of alkaline phosphatase even though the placental extract is rich in this activity. The purified enzyme is a glycoprotein and migrates as a single broad band of 82 kDa on SDS/PAGE. The same band is obtained after photoaffinity labeling of the enzyme with 8-azido-[alpha-32P]ATP. The enzyme has a broad substrate specificity, hydrolyzing triphosphonucleosides and diphosphonucleosides but not monophosphonucleosides or other phosphate esters. The activity is dependent on the addition of divalent cations Ca2+ or Mg2+. The Km values for ATP and ADP were determined to be 10 microM and 20 microM, respectively. Maximum activity was found at pH 7.0-7.5 with ATP as substrate, and pH 7.5-8.0 with ADP. The enzymic activity is inhibited by NaN3, NaF, adenosine 5'-[beta,gamma-imido]triphosphate and adenosine 5'-[alpha,beta-methylene]triphosphate. Protein sequence analysis showed ATP-DPH to be N-terminally blocked. Partial internal amino acid sequence information was obtained after chymotryptic cleavage and identified a unique sequence with no significant similarity to known proteins. ATP-DPH activity has been reported to be implicated in the prevention of platelet aggregation, hydrolysing ADP to AMP and thus preventing blood clotting. << Less
Eur. J. Biochem. 234:66-74(1995) [PubMed] [EuropePMC]
This publication is cited by 12 other entries.
-
PROPERTIES OF A SOLUBLE NUCLEOSIDE TRIPHOSPHATASE ACTIVITY IN MAMMALIAN LIVER.
LEWIS M., WEISSMAN S.
-
NMR structure and functional characterization of a human cancer-related nucleoside triphosphatase.
Placzek W.J., Almeida M.S., Wuethrich K.
A screen of the human cancer genome anatomy project (CGAP) database was performed to search for new proteins involved in tumorigenesis. The resulting hits were further screened for recombinant expression, solubility and protein aggregation, which led to the identification of the previously unknown ... >> More
A screen of the human cancer genome anatomy project (CGAP) database was performed to search for new proteins involved in tumorigenesis. The resulting hits were further screened for recombinant expression, solubility and protein aggregation, which led to the identification of the previously unknown human cancer-related (HCR) protein encoded by the mRNA NM_032324 as a target for structure determination by NMR. The three-dimensional structure of the protein in its complex with ATPgammaS forms a three-layered alpha/beta sandwich, with a central nine-stranded beta-sheet surrounded by five alpha-helices. Sequence and three-dimensional structure comparisons with AAA+ ATPases revealed the presence of Walker A (GPPGVGKT) and Walker B (VCVIDEIG) motifs. Using 1D (31)P-NMR spectroscopy and a coupled enzymatic assay for the determination of inorganic phosphate, we showed that the purified recombinant protein is active as a non-specific nucleoside triphosphatase, with k(cat)=7.6x10(-3) s(-1). The structural basis for the enzymatic activity of HCR-NTPase was further characterized by site-directed mutagenesis of the Walker B motif, which further contributes to making the HCR-NTPase an attractive new target for further biochemical characterization in the context of its presumed role in human tumorigenesis. << Less
-
The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins.
Tong C.G., Dauwalder M., Clawson G.A., Hatem C.L., Roux S.J., Roux S.J.
The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal porti ... >> More
The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis. << Less
-
Thermophile-specific proteins: the gene product of aq_1292 from Aquifex aeolicus is an NTPase.
Klinger C., Rossbach M., Howe R., Kaufmann M.
<h4>Background</h4>To identify thermophile-specific proteins, we performed phylogenetic patterns searches of 66 completely sequenced microbial genomes. This analysis revealed a cluster of orthologous groups (COG1618) which contains a protein from every thermophile and no sequence from 52 out of 53 ... >> More
<h4>Background</h4>To identify thermophile-specific proteins, we performed phylogenetic patterns searches of 66 completely sequenced microbial genomes. This analysis revealed a cluster of orthologous groups (COG1618) which contains a protein from every thermophile and no sequence from 52 out of 53 mesophilic genomes. Thus, COG1618 proteins belong to the group of thermophile-specific proteins (THEPs) and therefore we here designate COG1618 proteins as THEP1s. Since no THEP1 had been analyzed biochemically thus far, we characterized the gene product of aq_1292 which is THEP1 from the hyperthermophilic bacterium Aquifex aeolicus (aaTHEP1).<h4>Results</h4>aaTHEP1 was cloned in E. coli, expressed and purified to homogeneity. At a temperature optimum between 70 and 80 degrees C, aaTHEP1 shows enzymatic activity in hydrolyzing ATP to ADP + Pi with kcat = 5 x 10(-3) s(-1) and Km = 5.5 x 10(-6) M. In addition, the enzyme exhibits GTPase activity (kcat = 9 x 10(-3) s(-1) and Km= 45 x 10(-6) M). aaTHEP1 is inhibited competitively by CTP, UTP, dATP, dGTP, dCTP, and dTTP. As shown by gel filtration, aaTHEP1 in its purified state appears as a monomer. The enzyme is resistant to limited proteolysis suggesting that it consists of a single domain. Although THEP1s are annotated as "predicted nucleotide kinases" we could not confirm such an activity experimentally.<h4>Conclusion</h4>Since aaTHEP1 is the first member of COG1618 that is characterized biochemically and functional information about one member of a COG may be transferred to the entire COG, we conclude that COG1618 proteins are a family of thermophilic NTPases. << Less
-
Purification of nucleoside triphosphatases from pea seedling ribosomes.
Matsushita S., Raacke I.D.
Comments
RHEA:23680 part of RHEA:36795