Enzymes
UniProtKB help_outline | 21,569 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline adenosylcob(III)inamide-GDP Identifier CHEBI:60487 Charge -1 Formula C68H95CoN21O21P2 InChIKeyhelp_outline IQTYKHRKNGVJEO-RRMAJTJESA-K SMILEShelp_outline [H][C@@]12[C@H](CC(N)=O)[C@@](C)(CCC(=O)NC[C@@H](C)OP([O-])(=O)OP([O-])(=O)OC[C@H]3O[C@H]([C@H](O)[C@@H]3O)n3cnc4c3nc(N)[nH]c4=O)C3=C(C)C4=[N+]5C(=CC6=[N+]7C(=C(C)C8=[N+]([C@]1(C)[C@@](C)(CC(N)=O)[C@@H]8CCC(N)=O)[Co--]57(C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc5c(N)ncnc15)N23)[C@@](C)(CC(N)=O)[C@@H]6CCC(N)=O)C(C)(C)[C@@H]4CCC(N)=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline α-ribazole 5'-phosphate Identifier CHEBI:57918 Charge -2 Formula C14H17N2O7P InChIKeyhelp_outline ZMRGXEJKZPRBPJ-SYQHCUMBSA-L SMILEShelp_outline Cc1cc2ncn([C@H]3O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]3O)c2cc1C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline adenosylcob(III)alamin 5'-phosphate Identifier CHEBI:60493 Charge -2 Formula C72H99CoN18O20P2 InChIKeyhelp_outline ZKESCEDFYCGFMC-OUCXYWSSSA-J SMILEShelp_outline [H][C@]12[C@H](CC(N)=O)[C@@]3(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@@H]4[C@@H](COP([O-])([O-])=O)O[C@@H]([C@@H]4O)n4c[n+](c5cc(C)c(C)cc45)[Co-3]456(C[C@H]7O[C@H]([C@H](O)[C@@H]7O)n7cnc8c(N)ncnc78)N1C3=C(C)C1=[N+]4C(=CC3=[N+]5C(=C(C)C4=[N+]6[C@]2(C)[C@@](C)(CC(N)=O)[C@@H]4CCC(N)=O)[C@@](C)(CC(N)=O)[C@@H]3CCC(N)=O)C(C)(C)[C@@H]1CCC(N)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline GMP Identifier CHEBI:58115 Charge -2 Formula C10H12N5O8P InChIKeyhelp_outline RQFCJASXJCIDSX-UUOKFMHZSA-L SMILEShelp_outline Nc1nc2n(cnc2c(=O)[nH]1)[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23560 | RHEA:23561 | RHEA:23562 | RHEA:23563 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
The biosynthesis of adenosylcobalamin (vitamin B12).
Warren M.J., Raux E., Schubert H.L., Escalante-Semerena J.C.
Vitamin B12, or cobalamin, is one of the most structurally complex small molecules made in Nature. Major progress has been made over the past decade in understanding how this synthesis is accomplished. This review covers some of the most important findings that have been made and provides the read ... >> More
Vitamin B12, or cobalamin, is one of the most structurally complex small molecules made in Nature. Major progress has been made over the past decade in understanding how this synthesis is accomplished. This review covers some of the most important findings that have been made and provides the reader with a complete description of the transformation of uroporphyrinogen III into adenosylcobalamin (AdoCbl). 183 references are cited. << Less
Nat Prod Rep 19:390-412(2002) [PubMed] [EuropePMC]
This publication is cited by 16 other entries.
-
Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5'-phosphate) synthase.
Cameron B., Blanche F., Rouyez M.-C., Bisch D., Famechon A., Couder M., Cauchois L., Thibaut D., Debussche L., Crouzet J.
Tn5 Sp(r) transposons have been inserted into the 8-kb Pseudomonas denitrificans DNA fragment from complementation group D, which carries cob genes. Genetic analysis and the nucleotide sequence revealed that only two cob genes (cobU and cobV) were found on this cob genomic locus. Nicotinate-nucleo ... >> More
Tn5 Sp(r) transposons have been inserted into the 8-kb Pseudomonas denitrificans DNA fragment from complementation group D, which carries cob genes. Genetic analysis and the nucleotide sequence revealed that only two cob genes (cobU and cobV) were found on this cob genomic locus. Nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase (EC 2.4.2.21) was assayed and purified to homogeneity from a P. denitrificans strain in which cobU and cobV were amplified. The purified enzyme was identified as the cobU gene product on the basis of identical molecular weights and N-terminal sequences. Cobalamin (5'-phosphate) synthase activity was increased when cobV was amplified in P. denitrificans. The partially purified enzyme catalyzed not only the synthesis of cobalamin 5'-phosphate from GDP-cobinamide and alpha-ribazole 5'-phosphate but also the one-step synthesis of cobalamin from GDP-cobinamide and alpha-ribazole. Biochemical data provided evidence that cobV encodes cobalamin (5'-phosphate) synthase. << Less
-
In vitro synthesis of the nucleotide loop of cobalamin by Salmonella typhimurium enzymes.
Maggio-Hall L.A., Escalante-Semerena J.C.
In Salmonella typhimurium, the CobU, CobS, CobT, and CobC proteins have been proposed to catalyze the late steps in adenosylcobalamin biosynthesis, which define the nucleotide loop assembly pathway. This paper reports the in vitro assembly of the nucleotide loop of adenosylcobalamin from its precu ... >> More
In Salmonella typhimurium, the CobU, CobS, CobT, and CobC proteins have been proposed to catalyze the late steps in adenosylcobalamin biosynthesis, which define the nucleotide loop assembly pathway. This paper reports the in vitro assembly of the nucleotide loop of adenosylcobalamin from its precursors adenosylcobinamide, 5, 6-dimethylbenzimidazole, nicotinate mononucleotide, and GTP. Incubation of these precursors with the CobU, CobS, and CobT proteins resulted in the synthesis of adenosylcobalamin-5'-phosphate. This cobamide was isolated by HPLC, identified by UV-visible spectroscopy and mass spectrometry, and shown to support growth of a cobalamin auxotroph. Adenosylcobalamin-5'-phosphate was also isolated from reaction mixtures containing adenosylcobinamide-GDP (the product of the CobU reaction) and alpha-ribazole-5'-phosphate (the product of the CobT reaction) as substrates and CobS. These results allowed us to conclude that CobS is the cobalamin(-5'-phosphate) synthase enzyme in S. typhimurium. The CobC enzyme, previously shown to dephosphorylate alpha-ribazole-5'-phosphate to alpha-ribazole, was shown to dephosphorylate adenosylcobalamin-5'-phosphate to adenosylcobalamin. Adenosylcobinamide was converted to adenosylcobalamin in reactions where all four enzymes were present in the reaction mixture. This in vitro system offers a unique opportunity for the rapid synthesis and isolation of cobamides with structurally different lower-ligand bases that can be used to investigate the contributions of the lower-ligand base to cobalamin-dependent reactions. << Less
Proc. Natl. Acad. Sci. U.S.A. 96:11798-11803(1999) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.