Reaction participants Show >> << Hide
- Name help_outline 2'-deoxyadenosine Identifier CHEBI:17256 (Beilstein: 91015; CAS: 958-09-8) help_outline Charge 0 Formula C10H13N5O3 InChIKeyhelp_outline OLXZPDWKRNYJJZ-RRKCRQDMSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@H]1C[C@H](O)[C@@H](CO)O1 2D coordinates Mol file for the small molecule Search links Involved in 8 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dAMP Identifier CHEBI:58245 (Beilstein: 3573917) help_outline Charge -2 Formula C10H12N5O6P InChIKeyhelp_outline KHWCHTKSEGGWEX-RRKCRQDMSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@H]1C[C@H](O)[C@@H](COP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23452 | RHEA:23453 | RHEA:23454 | RHEA:23455 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Four deoxynucleoside kinase activities from Drosophila melanogaster are contained within a single monomeric enzyme, a new multifunctional deoxynucleoside kinase.
Munch-Petersen B., Piskur J., Sondergaard L.
In mammalian cells, there are three pyrimidine nucleoside salvage enzymes with the capacity to phosphorylate all four deoxynucleosides, the two thymidine kinase isoenzymes, TK1 and TK2, and the deoxycytidine kinase, dCK. TK1 is cell cycle-regulated; TK2 is expressed constitutively and can phosphor ... >> More
In mammalian cells, there are three pyrimidine nucleoside salvage enzymes with the capacity to phosphorylate all four deoxynucleosides, the two thymidine kinase isoenzymes, TK1 and TK2, and the deoxycytidine kinase, dCK. TK1 is cell cycle-regulated; TK2 is expressed constitutively and can phosphorylate deoxycytidine to the same extent as thymidine. dCK phosphorylates deoxycytidine, deoxyadenosine, and deoxyguanosine, but not thymidine. In addition, the three kinases can phosphorylate a number of medically important analogs. In cultured Drosophila melanogaster embryonic cells, only one pyrimidine deoxynucleoside kinase was present. This kinase was purified and showed a broad substrate specificity, since it was able to phosphorylate all four deoxynucleosides with high efficiency, as compared with the kinases in mammalian cells. Additionally, a number of nucleoside analogs such as arabinofuranosyl pyrimidines, deoxyuridine, and 5'-fluorodeoxyuridine, were phosphorylated. There was negligible 3'-azidothymidine and no dTMP phosphorylation. The enzyme was active as a monomer of about 30 kDa. We suggest the name D. melanogaster deoxynucleoside kinase for this multifunctional kinase. The substrate specificity, size, and other characteristics show that this enzyme is more related to human TK2 than to the other mammalian deoxyribonucleoside kinases, but is unique with respect to the capacity to phosphorylate all four deoxynucleosides. << Less
J. Biol. Chem. 273:3926-3931(1998) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Functional expression of a multisubstrate deoxyribonucleoside kinase from Drosophila melanogaster and its C-terminal deletion mutants.
Munch-Petersen B., Knecht W., Lenz C., Sondergaard L., Piskur J.
The occurrence of a deoxyribonucleoside kinase in Drosophila melanogaster (Dm-dNK) with remarkably broad substrate specificity has recently been indicated (Munch-Petersen, B., Piskur, J., and Søndergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). To prove that the capacity to phosphorylate all fou ... >> More
The occurrence of a deoxyribonucleoside kinase in Drosophila melanogaster (Dm-dNK) with remarkably broad substrate specificity has recently been indicated (Munch-Petersen, B., Piskur, J., and Søndergaard, L. (1998) J. Biol. Chem. 273, 3926-3931). To prove that the capacity to phosphorylate all four deoxyribonucleosides is in fact associated to one polypeptide chain, partially sequenced cDNA clones, originating from the Berkeley Drosophila genome sequencing project, were searched for homology with human deoxyribonucleoside kinases. The total sequence of one cDNA clone and the corresponding genomic DNA was determined and expressed in Escherichia coli as a glutathione S-transferase fusion protein. The purified and thrombin cleaved recombinant protein phosphorylated the four deoxyribonucleosides with high turnover and K(m) values similar to those of the native Dm-dNK, as well as the four ribonucleosides and many therapeutical nucleoside analogs. Dm-dNK has apparently the same origin as the mammalian kinases, thymidine kinase 2, deoxycytidine kinase, deoxyguanosine kinase, and the herpes viral thymidine kinases, but it has a unique C terminus that seems to be important for catalytic activity and specificity. The C-terminal 20 amino acids were dispensable for phosphorylation of deoxyribonucleosides but necessary for full activity with purine ribonucleosides. Removal of the C-terminal 20 amino acids increased the specific activity 2-fold, but 99% of the activity was lost after removal of the C-terminal 30 amino acids. << Less
J. Biol. Chem. 275:6673-6679(2000) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Dictyostelium discoideum salvages purine deoxyribonucleosides by highly specific bacterial-like deoxyribonucleoside kinases.
Sandrini M.P.B., Soederbom F., Mikkelsen N.E., Piskur J.
The salvage of deoxyribonucleosides in the social amoeba Dictyostelium discoideum, which has an extremely A+T-rich genome, was investigated. All native deoxyribonucleosides were phosphorylated by D. discoideum cell extracts and we subcloned three deoxyribonucleoside kinase (dNK) encoding genes. D. ... >> More
The salvage of deoxyribonucleosides in the social amoeba Dictyostelium discoideum, which has an extremely A+T-rich genome, was investigated. All native deoxyribonucleosides were phosphorylated by D. discoideum cell extracts and we subcloned three deoxyribonucleoside kinase (dNK) encoding genes. D. discoideum thymidine kinase was similar to the human thymidine kinase 1 and was specific for thymidine with a K(m) of 5.1 microM. The other two cloned kinases were phylogenetically closer to bacterial deoxyribonucleoside kinases than to the eukaryotic enzymes. D. discoideum deoxyadenosine kinase (DddAK) had a K(m) for deoxyadenosine of 22.7 microM and a k(cat) of 3.7 s(-1) and could not efficiently phosphorylate any other native deoxyribonucleoside. D. discoideum deoxyguanosine kinase was also a purine-specific kinase and phosphorylated significantly only deoxyguanosine, with a K(m) of 1.4 microM and a k(cat) of 3 s(-1). The two purine-specific deoxyribonucleoside kinases could represent ancient enzymes present in the common ancestor of bacteria and eukaryotes but remaining only in a few eukaryote lineages. The narrow substrate specificity of the D. discoideum dNKs reflects the biased genome composition and we attempted to explain the strict preference of DddAK for deoxyadenosine by modeling the active center with different substrates. Apart from its native substrate, deoxyadenosine, DddAK efficiently phosphorylated fludarabine. Hence, DddAK could be used in the enzymatic production of fludarabine monophosphate, a drug used in the treatment of chronic lymphocytic leukemia. << Less
J. Mol. Biol. 369:653-664(2007) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.