Reaction participants Show >> << Hide
- Name help_outline a 9-cis-epoxycarotenoid Identifier CHEBI:51973 Charge 0 Formula C29H39O2R SMILEShelp_outline C\C([*])=C/C=C/C(C)=C/C=C/C=C(C)/C=C/C=C(C)\C=C\[C@@]12O[C@]1(C)C[C@@H](O)CC2(C)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 2-cis,4-trans-xanthoxin Identifier CHEBI:32304 (CAS: 8066-07-7,26932-58-1) help_outline Charge 0 Formula C15H22O3 InChIKeyhelp_outline ZTALKMXOHWQNIA-TVBSHJCBSA-N SMILEShelp_outline CC(\C=C\[C@@]12O[C@]1(C)C[C@@H](O)CC2(C)C)=C\C=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 12'-apo-carotenal Identifier CHEBI:51972 Charge 0 Formula C14H17OR SMILEShelp_outline C\C([*])=C/C=C/C(C)=C/C=C/C=C(\C)C=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23328 | RHEA:23329 | RHEA:23330 | RHEA:23331 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid.
Thompson A.J., Jackson A.C., Symonds R.C., Mulholland B.J., Dadswell A.R., Blake P.S., Burbidge A., Taylor I.B.
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants i ... >> More
The tomato mutant notabilis has a wilty phenotype as a result of abscisic acid (ABA) deficiency. The wild-type allele of notabilis, LeNCED1, encodes a putative 9-cis-epoxycarotenoid dioxygenase (NCED) with a potential regulatory role in ABA biosynthesis. We have created transgenic tobacco plants in which expression of the LeNCED1 coding region is under tetracycline-inducible control. When leaf explants from these plants were treated with tetracycline, NCED mRNA was induced and bulk leaf ABA content increased by up to 10-fold. Transgenic tomato plants were also produced containing the LeNCED1 coding region under the control of one of two strong constitutive promoters, either the doubly enhanced CaMV 35S promoter or the chimaeric 'Super-Promoter'. Many of these plants were wilty, suggesting co-suppression of endogenous gene activity; however three transformants displayed a common, heritable phenotype that could be due to enhanced ABA biosynthesis, showing increased guttation and seed dormancy. Progeny from two of these transformants were further characterized, and it was shown that they also exhibited reduced stomatal conductance, increased NCED mRNA and elevated seed ABA content. Progeny of one transformant had significantly higher bulk leaf ABA content compared to the wild type. The increased seed dormancy was reversed by addition of the carotenoid biosynthesis inhibitor norflurazon. These data provide strong evidence that NCED is indeed a key regulatory enzyme in ABA biosynthesis in leaves, and demonstrate for the first time that plant ABA content can be increased through manipulating NCED. << Less
Plant J 23:363-374(2000) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Genetic control of abscisic acid biosynthesis in maize.
Tan B.C., Schwartz S.H., Zeevaart J.A., McCarty D.R.
Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identifi ... >> More
Abscisic acid (ABA), an apocarotenoid synthesized from cleavage of carotenoids, regulates seed maturation and stress responses in plants. The viviparous seed mutants of maize identify genes involved in synthesis and perception of ABA. Two alleles of a new mutant, viviparous14 (vp14), were identified by transposon mutagenesis. Mutant embryos had normal sensitivity to ABA, and detached leaves of mutant seedlings showed markedly higher rates of water loss than those of wild type. The ABA content of developing mutant embryos was 70% lower than that of wild type, indicating a defect in ABA biosynthesis. vp14 embryos were not deficient in epoxy-carotenoids, and extracts of vp14 embryos efficiently converted the carotenoid cleavage product, xanthoxin, to ABA, suggesting a lesion in the cleavage reaction. vp14 was cloned by transposon tagging. The VP14 protein sequence is similar to bacterial lignostilbene dioxygenases (LSD). LSD catalyzes a double-bond cleavage reaction that is closely analogous to the carotenoid cleavage reaction of ABA biosynthesis. Southern blots indicated a family of four to six related genes in maize. The Vp14 mRNA is expressed in embryos and roots and is strongly induced in leaves by water stress. A family of Vp14-related genes evidently controls the first committed step of ABA biosynthesis. These genes are likely to play a key role in the developmental and environmental control of ABA synthesis in plants. << Less
Proc. Natl. Acad. Sci. U.S.A. 94:12235-12240(1997) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean.
Qin X., Zeevaart J.A.
Abscisic acid (ABA), a cleavage product of carotenoids, is involved in stress responses in plants. A well known response of plants to water stress is accumulation of ABA, which is caused by de novo synthesis. The limiting step of ABA biosynthesis in plants is presumably the cleavage of 9-cis-epoxy ... >> More
Abscisic acid (ABA), a cleavage product of carotenoids, is involved in stress responses in plants. A well known response of plants to water stress is accumulation of ABA, which is caused by de novo synthesis. The limiting step of ABA biosynthesis in plants is presumably the cleavage of 9-cis-epoxycarotenoids, the first committed step of ABA biosynthesis. This step generates the C(15) intermediate xanthoxin and C(25)-apocarotenoids. A cDNA, PvNCED1, was cloned from wilted bean (Phaseolus vulgaris L.) leaves. The 2, 398-bp full-length PvNCED1 has an ORF of 615 aa and encodes a 68-kDa protein. The PvNCED1 protein is imported into chloroplasts, where it is associated with the thylakoids. The recombinant protein PvNCED1 catalyzes the cleavage of 9-cis-violaxanthin and 9'-cis-neoxanthin, so that the enzyme is referred to as 9-cis-epoxycarotenoid dioxygenase. When detached bean leaves were water stressed, ABA accumulation was preceded by large increases in PvNCED1 mRNA and protein levels. Conversely, rehydration of stressed leaves caused a rapid decrease in PvNCED1 mRNA, protein, and ABA levels. In bean roots, a similar correlation among PvNCED1 mRNA, protein, and ABA levels was observed. However, the ABA content was much less than in leaves, presumably because of the much smaller carotenoid precursor pool in roots than in leaves. At 7 degrees C, PvNCED1 mRNA and ABA were slowly induced by water stress, but, at 2 degrees C, neither accumulated. The results provide evidence that drought-induced ABA biosynthesis is regulated by the 9-cis-epoxycarotenoid cleavage reaction and that this reaction takes place in the thylakoids, where the carotenoid substrate is located. << Less
Proc. Natl. Acad. Sci. U.S.A. 96:15354-15361(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis.
Iuchi S., Kobayashi M., Taji T., Naramoto M., Seki M., Kato T., Tabata S., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K.
Abscisic acid (ABA), a plant hormone, is involved in responses to environmental stresses such as drought and high salinity, and is required for stress tolerance. ABA is synthesized de novo in response to dehydration. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be a key enzyme in ABA bio ... >> More
Abscisic acid (ABA), a plant hormone, is involved in responses to environmental stresses such as drought and high salinity, and is required for stress tolerance. ABA is synthesized de novo in response to dehydration. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be a key enzyme in ABA biosynthesis. Here we demonstrate that the expression of an NCED gene of Arabidopsis, AtNCED3, is induced by drought stress and controls the level of endogenous ABA under drought-stressed conditions. Overexpression of AtNCED3 in transgenic Arabidopsis caused an increase in endogenous ABA level, and promoted transcription of drought- and ABA-inducible genes. Plants overexpressing AtNCED3 showed a reduction in transpiration rate from leaves and an improvement in drought tolerance. By contrast, antisense suppression and disruption of AtNCED3 gave a drought-sensitive phenotype. These results indicate that the expression of AtNCED3 plays a key role in ABA biosynthesis under drought-stressed conditions in Arabidopsis. We improved drought tolerance by gene manipulation of AtNCED3 causing the accumulation of endogenous ABA. << Less
Plant J. 27:325-333(2001) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Specific oxidative cleavage of carotenoids by VP14 of maize.
Schwartz S.H., Tan B.C., Gage D.A., Zeevaart J.A., McCarty D.R.
The plant growth regulator abscisic acid (ABA) is formed by the oxidative cleavage of an epoxy-carotenoid. The synthesis of other apocarotenoids, such as vitamin A in animals, may occur by a similar mechanism. In ABA biosynthesis, oxidative cleavage is the first committed reaction and is believed ... >> More
The plant growth regulator abscisic acid (ABA) is formed by the oxidative cleavage of an epoxy-carotenoid. The synthesis of other apocarotenoids, such as vitamin A in animals, may occur by a similar mechanism. In ABA biosynthesis, oxidative cleavage is the first committed reaction and is believed to be the key regulatory step. A new ABA-deficient mutant of maize has been identified and the corresponding gene, Vp14, has been cloned. The recombinant VP14 protein catalyzes the cleavage of 9-cis-epoxy-carotenoids to form C25 apo-aldehydes and xanthoxin, a precursor of ABA in higher plants. << Less
Science 276:1872-1874(1997) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.