Enzymes
UniProtKB help_outline | 16 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ATP Identifier CHEBI:30616 (Beilstein: 3581767) help_outline Charge -4 Formula C10H12N5O13P3 InChIKeyhelp_outline ZKHQWZAMYRWXGA-KQYNXXCUSA-J SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,280 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dAMP Identifier CHEBI:58245 (Beilstein: 3573917) help_outline Charge -2 Formula C10H12N5O6P InChIKeyhelp_outline KHWCHTKSEGGWEX-RRKCRQDMSA-L SMILEShelp_outline Nc1ncnc2n(cnc12)[C@H]1C[C@H](O)[C@@H](COP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ADP Identifier CHEBI:456216 (Beilstein: 3783669) help_outline Charge -3 Formula C10H12N5O10P2 InChIKeyhelp_outline XTWYTFMLZFPYCI-KQYNXXCUSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 841 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline dADP Identifier CHEBI:57667 (Beilstein: 11523262) help_outline Charge -3 Formula C10H12N5O9P2 InChIKeyhelp_outline DAEAPNUQQAICNR-RRKCRQDMSA-K SMILEShelp_outline Nc1ncnc2n(cnc12)[C@H]1C[C@H](O)[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O1 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:23100 | RHEA:23101 | RHEA:23102 | RHEA:23103 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The partial purification of deoxynucleoside monophosphate kinases from L cells.
Griffith T.J., Helleiner C.W.
-
Adenylate kinase from baker's yeast. II. Substrate specificity.
Su S., Russell P.J.
-
The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase.
Amiri M., Conserva F., Panayiotou C., Karlsson A., Solaroli N.
Adenylate kinases regulate adenine nucleotide levels and are present in different intracellular compartments. These enzymes also participate in the activation of pharmacologically active nucleoside and nucleotide analogs. We have in the present study identified the ninth isoform of the adenylate k ... >> More
Adenylate kinases regulate adenine nucleotide levels and are present in different intracellular compartments. These enzymes also participate in the activation of pharmacologically active nucleoside and nucleotide analogs. We have in the present study identified the ninth isoform of the adenylate kinase family of enzymes and accordingly named the protein adenylate kinase 9 (AK9). Initially a full-length cDNA of a hypothetical protein containing a predicted adenylate kinase domain was identified and subsequently cloned and expressed in Escherichia coli. The substrate specificity of the recombinant protein showed that the enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP as phosphate donor, while only AMP and CMP were phosphorylated when GTP was the phosphate donor. The kinetic parameters of AK9 were determined for AMP, dAMP and CMP with ATP as phosphate donor. Interestingly, in addition to the diphosphate products, a nucleoside diphosphate kinase (NDPK) activity was also present with subsequent triphosphates formed. With ATP or GTP as phosphate donor it was possible to detect the production of ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and TTP as enzymatic products from the corresponding diphosphate substrates. A number of previously characterized adenylate kinases were also tested and found to possess a broad phosphotransferase activity similar to AK9. These enzymes are accordingly suggested to be regarded as nucleoside mono- and diphosphate kinases with catalytic activities possibly determined by local substrate concentrations. << Less
Int. J. Biochem. Cell Biol. 45:925-931(2013) [PubMed] [EuropePMC]
This publication is cited by 23 other entries.
-
Identification of a novel human adenylate kinase. cDNA cloning, expression analysis, chromosome localization and characterization of the recombinant protein.
Van Rompay A.R., Johansson M., Karlsson A.
Adenylate kinases have an important role in the synthesis of adenine nucleotides that are required for cellular metabolism. We report the cDNA cloning of a novel 22-kDa human enzyme that is sequence related to the human adenylate kinases and to UMP/CMP kinase of several species. The enzyme was exp ... >> More
Adenylate kinases have an important role in the synthesis of adenine nucleotides that are required for cellular metabolism. We report the cDNA cloning of a novel 22-kDa human enzyme that is sequence related to the human adenylate kinases and to UMP/CMP kinase of several species. The enzyme was expressed in Escherichia coli and shown to catalyse phosphorylation of AMP and dAMP with ATP as phosphate donor. When GTP was used as phosphate donor, the enzyme phosphorylated AMP, CMP, and to a small extent dCMP. Expression as a fusion protein with the green fluorescent protein showed that the enzyme is located in the cytosol. Northern blot analysis with mRNA from eight different human tissues demonstrated that the enzyme was expressed exclusively in brain, with two mRNA isoforms of 2.4 and 4.0 kb. The gene that encoded the enzyme was localized to chromosome 1p31. Based on the substrate specificity and the sequence similarity with the previously identified human adenylate kinases, we have named this novel enzyme adenylate kinase 5. << Less