Reaction participants Show >> << Hide
- Name help_outline (6R)-5,10-methylene-5,6,7,8-tetrahydrofolate Identifier CHEBI:15636 (Beilstein: 5468618) help_outline Charge -2 Formula C20H21N7O6 InChIKeyhelp_outline QYNUQALWYRSVHF-OLZOCXBDSA-L SMILEShelp_outline [H][C@]12CNc3nc(N)[nH]c(=O)c3N1CN(C2)c1ccc(cc1)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6R)-5,10-methenyltetrahydrofolate Identifier CHEBI:57455 Charge -1 Formula C20H20N7O6 InChIKeyhelp_outline MEANFMOQMXYMCT-OLZOCXBDSA-M SMILEShelp_outline [H][C@]12CNc3nc(N)[nH]c(=O)c3[N+]1=CN(C2)c1ccc(cc1)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22892 | RHEA:22893 | RHEA:22894 | RHEA:22895 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The X-ray structure of the NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Saccharomyces cerevisiae.
Monzingo A.F., Breksa A., Ernst S., Appling D.R., Robertus J.D.
Eucaryotes possess one or more NADP-dependent methylene-THF dehydrogenases as part of multifunctional enzymes. In addition, yeast expresses an unusual monofunctional NAD-dependent enzyme, yMTD. We report X-ray structures for the apoenzyme and its complex with NAD+ at 2.8 and 3.0 A resolution, resp ... >> More
Eucaryotes possess one or more NADP-dependent methylene-THF dehydrogenases as part of multifunctional enzymes. In addition, yeast expresses an unusual monofunctional NAD-dependent enzyme, yMTD. We report X-ray structures for the apoenzyme and its complex with NAD+ at 2.8 and 3.0 A resolution, respectively. The protein fold resembles that seen for the human and Escherichia coli dehydrogenase/cyclohydrolase bifunctional enzymes. The enzyme has two prominent domains, with the active site cleft between them. yMTD has a noncanonical NAD-binding domain that has two inserted strands compared with the NADP-binding domains of the bifunctional enzymes. This insert precludes yMTD from dimerizing in the same way as the bifunctional enzymes. yMTD functions as a dimer, but the mode of dimerization is novel. It does not appear that the difference in dimerization accounts for the difference in cofactor specificity or for the loss of cyclohydrolase activity. These functional differences are probably accounted for by minor differences within the tertiary structure of the active site of the monomeric protein. << Less
-
Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues.
Bolusani S., Young B.A., Cole N.A., Tibbetts A.S., Momb J., Bryant J.D., Solmonson A., Appling D.R.
Previous studies in our laboratory showed that isolated, intact adult rat liver mitochondria are able to oxidize the 3-carbon of serine and the N-methyl carbon of sarcosine to formate without the addition of any other cofactors or substrates. Conversion of these 1-carbon units to formate requires ... >> More
Previous studies in our laboratory showed that isolated, intact adult rat liver mitochondria are able to oxidize the 3-carbon of serine and the N-methyl carbon of sarcosine to formate without the addition of any other cofactors or substrates. Conversion of these 1-carbon units to formate requires several folate-interconverting enzymes in mitochondria. The enzyme(s) responsible for conversion of 5,10-methylene-tetrahydrofolate (CH(2)-THF) to 10-formyl-THF in adult mammalian mitochondria are currently unknown. A new mitochondrial CH(2)-THF dehydrogenase isozyme, encoded by the MTHFD2L gene, has now been identified. The recombinant protein exhibits robust NADP(+)-dependent CH(2)-THF dehydrogenase activity when expressed in yeast. The enzyme is localized to mitochondria when expressed in CHO cells and behaves as a peripheral membrane protein, tightly associated with the matrix side of the mitochondrial inner membrane. The MTHFD2L gene is subject to alternative splicing and is expressed in adult tissues in humans and rodents. This CH(2)-THF dehydrogenase isozyme thus fills the remaining gap in the pathway from CH(2)-THF to formate in adult mammalian mitochondria. << Less
-
Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum.
Moore M.R., O'Brien W.E., Ljungdahl L.G.