Enzymes
UniProtKB help_outline | 1,072 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline L-serine Identifier CHEBI:33384 Charge 0 Formula C3H7NO3 InChIKeyhelp_outline MTCFGRXMJLQNBG-REOHCLBHSA-N SMILEShelp_outline [NH3+][C@@H](CO)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 78 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-hydroxypyruvate Identifier CHEBI:17180 (Beilstein: 3904014) help_outline Charge -1 Formula C3H3O4 InChIKeyhelp_outline HHDDCCUIIUWNGJ-UHFFFAOYSA-M SMILEShelp_outline OCC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 21 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-alanine Identifier CHEBI:57972 Charge 0 Formula C3H7NO2 InChIKeyhelp_outline QNAYBMKLOCPYGJ-REOHCLBHSA-N SMILEShelp_outline C[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 112 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22852 | RHEA:22853 | RHEA:22854 | RHEA:22855 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase.
Zhang Q., Lee J., Pandurangan S., Clarke M., Pajak A., Marsolais F.
Asparagine (Asn) is a major form of nitrogen transported to sink tissues. Results from a previous study have shown that an Arabidopsis mutant lacking asparaginase activity develops relatively normally, highlighting a possible compensation by other types of asparagine metabolic enzymes. Prior studi ... >> More
Asparagine (Asn) is a major form of nitrogen transported to sink tissues. Results from a previous study have shown that an Arabidopsis mutant lacking asparaginase activity develops relatively normally, highlighting a possible compensation by other types of asparagine metabolic enzymes. Prior studies with barley and tobacco mutants have associated Asn aminotransferase activity with the photorespiratory enzyme, serine (Ser):glyoxylate aminotransferase. This enzyme is encoded by AGT1 in Arabidopsis thaliana. Recombinant N-terminal His-tagged AGT1 purified from Escherichia coli was characterized with Ser, alanine (Ala) and Asn as amino acid donors and glyoxylate, pyruvate and hydroxypyruvate as organic acid acceptors. The V(max) of AGT1 with Asn was higher than with Ser or Ala by ca. 5-to 20-fold. As a result, the catalytic efficiency (V(max)/K(m)) was slightly higher with Asn than with the two other amino acids. In the roots of 10-day-old seedlings treated for 2h with 20mM Asn, the AGT1 transcript levels were raised by 2-fold. During this treatment, the concentration of Asn in root was raised by ca. 5-fold. These results suggest that AGT1 is involved in Asn metabolism in Arabidopsis. << Less
Phytochemistry 85:30-35(2013) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.
-
Glycerate 2-kinase of Thermotoga maritima and genomic reconstruction of related metabolic pathways.
Yang C., Rodionov D.A., Rodionova I.A., Li X., Osterman A.L.
Members of a novel glycerate-2-kinase (GK-II) family were tentatively identified in a broad range of species, including eukaryotes and archaea and many bacteria that lack a canonical enzyme of the GarK (GK-I) family. The recently reported three-dimensional structure of GK-II from Thermotoga mariti ... >> More
Members of a novel glycerate-2-kinase (GK-II) family were tentatively identified in a broad range of species, including eukaryotes and archaea and many bacteria that lack a canonical enzyme of the GarK (GK-I) family. The recently reported three-dimensional structure of GK-II from Thermotoga maritima (TM1585; PDB code 2b8n) revealed a new fold distinct from other known kinase families. Here, we verified the enzymatic activity of TM1585, assessed its kinetic characteristics, and used directed mutagenesis to confirm the essential role of the two active-site residues Lys-47 and Arg-325. The main objective of this study was to apply comparative genomics for the reconstruction of metabolic pathways associated with GK-II in all bacteria and, in particular, in T. maritima. Comparative analyses of approximately 400 bacterial genomes revealed a remarkable variety of pathways that lead to GK-II-driven utilization of glycerate via a glycolysis/gluconeogenesis route. In the case of T. maritima, a three-step serine degradation pathway was inferred based on the tentative identification of two additional enzymes, serine-pyruvate aminotransferase and hydroxypyruvate reductase (TM1400 and TM1401, respectively), that convert serine to glycerate via hydroxypyruvate. Both enzymatic activities were experimentally verified, and the entire pathway was validated by its in vitro reconstitution. << Less