Reaction participants Show >> << Hide
- Name help_outline (6R)-5,10-methylene-5,6,7,8-tetrahydrofolate Identifier CHEBI:15636 (Beilstein: 5468618) help_outline Charge -2 Formula C20H21N7O6 InChIKeyhelp_outline QYNUQALWYRSVHF-OLZOCXBDSA-L SMILEShelp_outline [H][C@]12CNc3nc(N)[nH]c(=O)c3N1CN(C2)c1ccc(cc1)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 22 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (6R)-5,10-methenyltetrahydrofolate Identifier CHEBI:57455 Charge -1 Formula C20H20N7O6 InChIKeyhelp_outline MEANFMOQMXYMCT-OLZOCXBDSA-M SMILEShelp_outline [H][C@]12CNc3nc(N)[nH]c(=O)c3[N+]1=CN(C2)c1ccc(cc1)C(=O)N[C@@H](CCC([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22812 | RHEA:22813 | RHEA:22814 | RHEA:22815 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target.
Eadsforth T.C., Gardiner M., Maluf F.V., McElroy S., James D., Frearson J., Gray D., Hunter W.N.
The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD) is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this ta ... >> More
The bifunctional enzyme methylenetetrahydrofolate dehydrogenase - cyclohydrolase (FolD) is identified as a potential drug target in Gram-negative bacteria, in particular the troublesome Pseudomonas aeruginosa. In order to provide a comprehensive and realistic assessment of the potential of this target for drug discovery we generated a highly efficient recombinant protein production system and purification protocol, characterized the enzyme, carried out screening of two commercial compound libraries by differential scanning fluorimetry, developed a high-throughput enzyme assay and prosecuted a screening campaign against almost 80,000 compounds. The crystal structure of P. aeruginosa FolD was determined at 2.2 Å resolution and provided a template for an assessment of druggability and for modelling of ligand complexes as well as for comparisons with the human enzyme. New FolD inhibitors were identified and characterized but the weak levels of enzyme inhibition suggest that these compounds are not optimal starting points for future development. Furthermore, the close similarity of the bacterial and human enzyme structures suggest that selective inhibition might be difficult to attain. In conclusion, although the preliminary biological data indicates that FolD represents a valuable target for the development of new antibacterial drugs, indeed spurred us to investigate it, our screening results and structural data suggest that this would be a difficult enzyme to target with respect to developing the appropriate lead molecules required to underpin a serious drug discovery effort. << Less
-
5,10-Methylenetetrahydrofolic dehydrogenase from bakers' yeast. I. Partial purification and some properties.
RAMASASTRI B.V., BLAKLEY R.L.
-
The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.
Vorholt J.A., Chistoserdova L.V., Lidstrom M.E., Thauer R.K.
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid se ... >> More
An NADP-dependent methylene tetrahydromethanopterin (H4MPT) dehydrogenase has recently been proposed to be involved in formaldehyde oxidation to CO2 in Methylobacterium extorquens AM1. We report here on the purification of this novel enzyme to apparent homogeneity. Via the N-terminal amino acid sequence, it was identified to be the mtdA gene product. The purified enzyme catalyzed the dehydrogenation of methylene H4MPT with NADP+ rather than with NAD+, with a specific activity of approximately 400 U/mg of protein. It also catalyzed the dehydrogenation of methylene tetrahydrofolate (methylene H4F) with NADP+. With methylene H4F as the substrate, however, the specific activity (26 U/mg) and the catalytic efficiency (Vmax/Km) were approximately 20-fold lower than with methylene H4MPT. Whereas the dehydrogenation of methylene H4MPT (E0 = -390 mV) with NADP+ (E0 = -320 mV) proceeded essentially irreversibly, the dehydrogenation of methylene H4F (E0 = -300 mV) was fully reversible. Comparison of the primary structure of the NADP-dependent dehydrogenase from M. extorquens AM1 with those of methylene H4F dehydrogenases from other bacteria and eucarya and with those of methylene H4MPT dehydrogenases from methanogenic archaea revealed only marginally significant similarity (<15%). << Less
J. Bacteriol. 180:5351-5356(1998) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Hydroxymethyl tetrahydrofolic dehydrogenase.
HATEFI Y., OSBORN M.J., KAY L.D., HUENNEKENS F.M.
-
Purification and properties of N5, N10-Methylenetetra-hydrofolate dehydrogenase of calf thymus.
Yeh Y.C., Greenberg D.M.