Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (2R)-O-phospho-3-sulfolactate Identifier CHEBI:15597 Charge -4 Formula C3H3O9PS InChIKeyhelp_outline CABHHUMGNFUZCZ-REOHCLBHSA-J SMILEShelp_outline [O-]C(=O)[C@H](CS([O-])(=O)=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphoenolpyruvate Identifier CHEBI:58702 (Beilstein: 3951723) help_outline Charge -3 Formula C3H2O6P InChIKeyhelp_outline DTBNBXWJWCWCIK-UHFFFAOYSA-K SMILEShelp_outline [O-]C(=O)C(=C)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 39 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline sulfite Identifier CHEBI:17359 (CAS: 14265-45-3) help_outline Charge -2 Formula O3S InChIKeyhelp_outline LSNNMFCWUKXFEE-UHFFFAOYSA-L SMILEShelp_outline [O-]S([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 60 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22784 | RHEA:22785 | RHEA:22786 | RHEA:22787 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes.
Graham D.E., Xu H., White R.H.
The hyperthermophilic euryarchaeon Methanococcus jannaschii uses coenzyme M (2-mercaptoethanesulfonic acid) as the terminal methyl carrier in methanogenesis. We describe an enzyme from that organism, (2R)-phospho-3-sulfolactate synthase (ComA), that catalyzes the first step in coenzyme M biosynthe ... >> More
The hyperthermophilic euryarchaeon Methanococcus jannaschii uses coenzyme M (2-mercaptoethanesulfonic acid) as the terminal methyl carrier in methanogenesis. We describe an enzyme from that organism, (2R)-phospho-3-sulfolactate synthase (ComA), that catalyzes the first step in coenzyme M biosynthesis. ComA catalyzed the stereospecific Michael addition of sulfite to phosphoenolpyruvate over a broad range of temperature and pH conditions. Substrate and product analogs moderately inhibited activity. This enzyme has no significant sequence similarity to previously characterized enzymes; however, its Mg(2+)-dependent enzyme reaction mechanism may be analogous to one proposed for enolase. A diverse group of microbes and plants have homologs of ComA that could have been recruited for sulfolactate or sulfolipid biosyntheses. << Less
-
The structural determination of phosphosulfolactate synthase from Methanococcus jannaschii at 1.7-A resolution: an enolase that is not an enolase.
Wise E.L., Graham D.E., White R.H., Rayment I.
Members of the enolase mechanistically diverse superfamily catalyze a wide variety of chemical reactions that are related by a common mechanistic feature, the abstraction of a proton adjacent to a carboxylate group. Recent investigations into the function and mechanism of the phosphosulfolactate s ... >> More
Members of the enolase mechanistically diverse superfamily catalyze a wide variety of chemical reactions that are related by a common mechanistic feature, the abstraction of a proton adjacent to a carboxylate group. Recent investigations into the function and mechanism of the phosphosulfolactate synthase encoded by the ComA gene in Methanococcus jannaschii have suggested that ComA, which catalyzes the stereospecific Michael addition of sulfite to phosphoenolpyruvate to form phosphosulfolactate, may be a member of the enolase superfamily. The ComA-catalyzed reaction, the first step in the coenzyme M biosynthetic pathway, likely proceeds via a Mg2+ ion-stabilized enolate intermediate in a manner similar to that observed for members of the enolase superfamily. ComA, however, has no significant sequence similarity to any known enolase. Here we report the x-ray crystal structure of ComA to 1.7-A resolution. The overall fold for ComA is an (alpha/beta)8 barrel that assembles with two other ComA molecules to form a trimer in which three active sites are created at the subunit interfaces. From the positions of two ordered sulfate ions in the active site, a model for the binding of phosphoenolpyruvate and sulfite is proposed. Despite its mechanistic similarity to the enolase superfamily, the overall structure and active site architecture of ComA are unlike any member of the enolase superfamily, which suggests that ComA is not a member of the enolase superfamily but instead acquired an enolase-type mechanism through convergent evolution. << Less