Enzymes
UniProtKB help_outline | 3,581 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) Identifier CHEBI:58456 Charge -5 Formula C11H14O19P3R2 SMILEShelp_outline O[C@@H]1[C@H](O)[C@@H](OP([O-])([O-])=O)[C@H](OP([O-])([O-])=O)[C@@H](O)[C@@H]1OP([O-])(=O)OC[C@@H](COC([*])=O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol 4-phosphate) Identifier CHEBI:58178 Charge -3 Formula C11H15O16P2R2 SMILEShelp_outline [H][C@@](COC([*])=O)(COP([O-])(=O)O[C@@H]1[C@H](O)[C@H](O)[C@@H](OP([O-])([O-])=O)[C@H](O)[C@H]1O)OC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 10 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22764 | RHEA:22765 | RHEA:22766 | RHEA:22767 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Related reactions help_outline
Specific form(s) of this reaction
Publications
-
A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.
Rameh L.E., Tolias K.F., Duckworth B.C., Cantley L.C.
Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2), a key molecule in the phosphoinositide signalling pathway, was thought to be synthesized exclusively by phosphorylation of PtdIns-4-P at the D-5 position of the inositol ring. The enzymes that produce PtdIns-4,5-P2 in vitro fall into two relat ... >> More
Phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2), a key molecule in the phosphoinositide signalling pathway, was thought to be synthesized exclusively by phosphorylation of PtdIns-4-P at the D-5 position of the inositol ring. The enzymes that produce PtdIns-4,5-P2 in vitro fall into two related subfamilies (type I and type II PtdInsP-5-OH kinases, or PIP(5)Ks) based on their enzymatic properties and sequence similarities'. Here we have reinvestigated the substrate specificities of these enzymes. As expected, the type I enzyme phosphorylates PtdIns-4-P at the D-5 position of the inositol ring. Surprisingly, the type II enzyme, which is abundant in some tissues, phosphorylates PtdIns-5-P at the D-4 position, and thus should be considered as a 4-OH kinase, or PIP(4)K. The earlier error in characterizing the activity of the type II enzyme is due to the presence of contaminating PtdIns-5-P in commercial preparations of PtdIns-4-P. Although PtdIns-5-P was previously thought not to exist in vivo, we find evidence for the presence of this lipid in mammalian fibroblasts, establishing a new pathway for PtdIns-4,5-P2 synthesis. << Less
Nature 390:192-196(1997) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles.
Mochizuki Y., Takenawa T.
We have cloned a novel inositol polyphosphate 5-phosphatase from the rat brain cDNA library. It contains two highly conserved 5-phosphatase motifs, both of which are essential for its enzymatic activity. Interestingly, the proline content of this protein is high and concentrated in its N- and C-te ... >> More
We have cloned a novel inositol polyphosphate 5-phosphatase from the rat brain cDNA library. It contains two highly conserved 5-phosphatase motifs, both of which are essential for its enzymatic activity. Interestingly, the proline content of this protein is high and concentrated in its N- and C-terminal regions. One putative SH3-binding motif and six 14-3-3 zeta-binding motifs were found in the amino acid sequence. This enzyme hydrolyzed phosphate at the D-5 position of inositol 1,4,5-trisphosphate, inositol 1,3,4, 5-tetrakisphosphate, and phosphatidylinositol 4,5-bisphosphate, consistent with the substrate specificity of type II 5-phosphatase, OCRL, synaptojanin and synaptojanin 2, already characterized 5-phosphatases. When the Myc-epitope-tagged enzyme was expressed in COS-7 cells and stained with anti-Myc polyclonal antibody, a signal was observed at ruffling membranes and in the cytoplasm. We prepared several deletion mutants and demonstrated that the 123 N-terminal amino acids (311-433) and a C-terminal proline-rich region containing 277 amino acids (725-1001) were essential for its localization to ruffling membranes. This enzyme might regulate the level of inositol and phosphatidylinositol polyphosphates at membrane ruffles. << Less
J. Biol. Chem. 274:36790-36795(1999) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase.
Kisseleva M.V., Wilson M.P., Majerus P.W.
We report the cDNA cloning and characterization of a novel human inositol polyphosphate 5-phosphatase (5-phosphatase) that has substrate specificity unlike previously described members of this large gene family. All previously described members hydrolyze water soluble inositol phosphates. This enz ... >> More
We report the cDNA cloning and characterization of a novel human inositol polyphosphate 5-phosphatase (5-phosphatase) that has substrate specificity unlike previously described members of this large gene family. All previously described members hydrolyze water soluble inositol phosphates. This enzyme hydrolyzes only lipid substrates, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 4,5-bisphosphate. The cDNA isolated comprises 3110 base pairs and predicts a protein product of 644 amino acids and M(r) = 70,023. We designate this 5-phosphatase as type IV. It is a highly basic protein (pI = 8.8) and has the greatest affinity toward phosphatidylinositol 3,4,5-trisphosphate of known 5-phosphatases. The K(m) is 0.65 micrometer, 1/10 that of SHIP (5.95 micrometer), another 5-phosphatase that hydrolyzes phosphatidylinositol 3,4,5-trisphosphate. The activity of 5-phosphatase type IV is sensitive to the presence of detergents in the in vitro assay. Thus the enzyme hydrolyzes lipid substrates in the absence of detergents or in the presence of n-octyl beta-glucopyranoside or Triton X-100, but not in the presence of cetyltriethylammonium bromide, the detergent that has been used in other studies of the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Remarkably SHIP, a 5-phosphatase previously characterized as hydrolyzing only substrates with d-3 phosphates, also readily hydrolyzed phosphatidylinositol 4,5-bisphosphate in the presence of n-octyl beta-glucopyranoside but not cetyltriethylammonium bromide. We used antibodies prepared against a peptide predicted by the cDNA to identify the 5-phosphatase type IV enzyme in human tissues and find that it is highly expressed in the brain as determined by Western blotting. We also performed Western blotting of mouse tissues and found high levels of expression in the brain, testes, and heart with lower levels of expression in other tissues. mRNA was detected in many tissues and cell lines as determined by Northern blotting. << Less
J. Biol. Chem. 275:20110-20116(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.