Enzymes
UniProtKB help_outline | 6 proteins |
Reaction participants Show >> << Hide
- Name help_outline (S)-4-hydroxy-2-oxopentanoate Identifier CHEBI:73143 Charge -1 Formula C5H7O4 InChIKeyhelp_outline HFKQINMYQUXOCH-VKHMYHEASA-M SMILEShelp_outline C[C@H](O)CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetaldehyde Identifier CHEBI:15343 (Beilstein: 505984; CAS: 75-07-0) help_outline Charge 0 Formula C2H4O InChIKeyhelp_outline IKHGUXGNUITLKF-UHFFFAOYSA-N SMILEShelp_outline [H]C(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 47 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (Beilstein: 3587721; CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22624 | RHEA:22625 | RHEA:22626 | RHEA:22627 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Characterization of an aldolase-dehydrogenase complex from the cholesterol degradation pathway of Mycobacterium tuberculosis.
Carere J., McKenna S.E., Kimber M.S., Seah S.Y.
HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoac ... >> More
HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization. << Less
Biochemistry 52:3502-3511(2013) [PubMed] [EuropePMC]
This publication is cited by 6 other entries.
-
Rational design of stereoselectivity in the class II pyruvate aldolase BphI.
Baker P., Seah S.Y.
BphI, a pyruvate-specific class II aldolase, catalyzes the reversible carbon-carbon bond formation of 4-hydroxy-2-oxoacids up to eight carbons in length. During the aldol addition catalyzed by BphI, the S-configured stereogenic center at C4 is created via attack of a pyruvate enolate intermediate ... >> More
BphI, a pyruvate-specific class II aldolase, catalyzes the reversible carbon-carbon bond formation of 4-hydroxy-2-oxoacids up to eight carbons in length. During the aldol addition catalyzed by BphI, the S-configured stereogenic center at C4 is created via attack of a pyruvate enolate intermediate on the si face of the aldehyde carbonyl of acetaldehyde to form 4(S)-hydroxy-2-oxopentanoate. Replacement of a Leu-87 residue within the active site of the enzyme with polar asparagine and bulky tryptophan led to enzymes with no detectable aldolase activity. These variants retained decarboxylase activity for the smaller oxaloacetate substrate, which is not inhibited by excess 4-hydroxy-2-oxopentanoate, confirming the results from molecular modeling that Leu-87 interacts with the C4-methyl of 4(S)-hydroxy-2-oxoacids. Double variants L87N;Y290F and L87W;Y290F were constructed to enable the binding of 4(R)-hydroxy-2-oxoacids by relieving the steric hindrance between the 5-methyl group of these compounds and the hydroxyl substituent on the phenyl ring of Tyr-290. The resultant enzymes were shown to exclusively utilize only 4(R)- and not 4(S)-hydroxy-2-oxopentanoate as the substrate. Polarimetric analysis confirmed that the double variants are able to synthesize 4-hydroxy-2-oxoacids up to eight carbons in length, which were the opposite stereoisomer compared to those produced by the wild-type enzyme. Overall the k(cat)/K(m) values for pyruvate and aldehydes in the aldol addition reactions were affected ≤10-fold in the double variants relative to the wild-type enzyme. Thus, stereocomplementary class II pyruvate aldolases are now available to create chiral 4-hydroxy-2-oxoacid skeletons as synthons for organic reactions. << Less
J. Am. Chem. Soc. 134:507-513(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl)propionate catabolic pathway of Escherichia coli K-12.
Ferrandez A., Garcia J.L., Diaz E.
We report the complete nucleotide sequence of the gene cluster encoding the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway of Escherichia coli K-12. Sequence analysis revealed the existence of eight genes that map at min 8 of the chromosome, between the lac and hemB regions. Six enzyme-en ... >> More
We report the complete nucleotide sequence of the gene cluster encoding the 3-(3-hydroxyphenyl)propionate (3-HPP) catabolic pathway of Escherichia coli K-12. Sequence analysis revealed the existence of eight genes that map at min 8 of the chromosome, between the lac and hemB regions. Six enzyme-encoding genes account for a flavin-type monooxygenase (mhpA), the extradiol dioxygenase (mhpB), and the meta-cleavage pathway (mhpCDFE). The order of these catabolic genes, with the sole exception of mhpF, parallels that of the enzymatic steps of the pathway. The mhpF gene may encode the terminal acetaldehyde dehydrogenase (acylating) not reported previously in the proposed pathway. Enzymes that catalyze the early reactions of the pathway, MhpA and MhpB, showed the lowest level of sequence similarity to analogous enzymes of other aromatic catabolic pathways. However, the genes mhpCDFE present the same organization and appear to be homologous to the Pseudomonas xyl, dmp, and nah meta-pathway genes, supporting the hypothesis of the modular evolution of catabolic pathways and becoming the first example of this type of catabolic module outside the genus Pseudomonas. Two bacterial interspersed mosaic elements were found downstream of the mhpABCDFE locus and flank a gene, orfT, which encodes a protein related to the superfamily of transmembrane facilitators that might be associated with transport. All of the genes of the 3-HPP cluster are transcribed in the same direction, with the sole exception of mhpR. Inducible expression of the mhp catabolic genes depends upon the presence, in the cis or trans position, of a functional mhpR gene, which suggests that the mhpR gene product is the activator of the 3-HPP biodegradative pathway. The primary structure of MhpR revealed significant similarities to that of members of the IclR subfamily of transcriptional regulators. A 3-HPP catabolic DNA cassette was engineered and shown to be functional not only in enteric bacteria (E. coli and Salmonella typhimurium) but also in Pseudomonas putida and Rhizobium meliloti, thus facilitating its potential application to improve the catabolic abilities of bacterial strains for degradation of aromatic compounds. << Less
J. Bacteriol. 179:2573-2581(1997) [PubMed] [EuropePMC]
This publication is cited by 5 other entries.