Enzymes
UniProtKB help_outline | 1,021 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline N-acetyl-9-O-acetylneuraminate Identifier CHEBI:28999 Charge -1 Formula C13H20NO10 InChIKeyhelp_outline NYWZBRWKDRMPAS-GRRZBWEESA-M SMILEShelp_outline [H][C@]1(O[C@@](O)(C[C@H](O)[C@H]1NC(C)=O)C([O-])=O)[C@H](O)[C@H](O)COC(C)=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,337 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetylneuraminate Identifier CHEBI:35418 Charge -1 Formula C11H18NO9 InChIKeyhelp_outline SQVRNKJHWKZAKO-LUWBGTNYSA-M SMILEShelp_outline [H][C@]1(OC(O)(C[C@H](O)[C@H]1NC(C)=O)C([O-])=O)[C@H](O)[C@H](O)CO 2D coordinates Mol file for the small molecule Search links Involved in 40 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline acetate Identifier CHEBI:30089 (CAS: 71-50-1) help_outline Charge -1 Formula C2H3O2 InChIKeyhelp_outline QTBSBXVTEAMEQO-UHFFFAOYSA-M SMILEShelp_outline CC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 180 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22600 | RHEA:22601 | RHEA:22602 | RHEA:22603 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Structural Analysis of Mammalian Sialic Acid Esterase.
Ide D., Gorelik A., Illes K., Nagar B.
Sialic acid esterase (SIAE) catalyzes the removal of O-acetyl groups from sialic acids found on cell surface glycoproteins to regulate cellular processes such as B cell receptor signalling and apoptosis. Loss-of-function mutations in SIAE are associated with several common autoimmune diseases incl ... >> More
Sialic acid esterase (SIAE) catalyzes the removal of O-acetyl groups from sialic acids found on cell surface glycoproteins to regulate cellular processes such as B cell receptor signalling and apoptosis. Loss-of-function mutations in SIAE are associated with several common autoimmune diseases including Crohn's, ulcerative colitis, and arthritis. To gain a better understanding of the function and regulation of this protein, we determined crystal structures of SIAE from three mammalian homologs, including an acetate bound structure. The structures reveal that the catalytic domain adopts the fold of the SGNH hydrolase superfamily. The active site is composed of a catalytic dyad, as opposed to the previously reported catalytic triad. Attempts to determine a substrate-bound structure yielded only the hydrolyzed product acetate in the active site. Rigid docking of complete substrates followed by molecular dynamics simulations revealed that the active site does not form specific interactions with substrates, rather it appears to be broadly specific to accept sialoglycans with diverse modifications. Based on the acetate bound structure, a catalytic mechanism is proposed. Structural mapping of disease mutations reveals that most are located on the surface of the enzyme and would only cause minor disruptions to the protein fold, suggesting that these mutations likely affect binding to other factors. These results improve our understanding of SIAE biology and may aid in the development of therapies for autoimmune diseases and cancer. << Less
J Mol Biol 436:168801-168801(2024) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
O-acetylation and de-O-acetylation of sialic acids. Purification, characterization, and properties of a glycosylated rat liver esterase specific for 9-O-acetylated sialic acids.
Higa H.H., Manzi A., Varki A.
We have previously described the preparation and use of 9-O-[acetyl-3H]acetyl-N-acetylneuraminic acid to identify sialic acid O-acetylesterases in tissues and cells (Higa, H. H., Diaz, S., and Varki, A. (1987) Biochem. Biophys. Res. Commun. 144, 1099-1108). All tissues of the adult rat showed thes ... >> More
We have previously described the preparation and use of 9-O-[acetyl-3H]acetyl-N-acetylneuraminic acid to identify sialic acid O-acetylesterases in tissues and cells (Higa, H. H., Diaz, S., and Varki, A. (1987) Biochem. Biophys. Res. Commun. 144, 1099-1108). All tissues of the adult rat showed these activities, with the exception of plasma. Rat liver contained two major sialic acid esterases: a cytosolic nonglycosylated enzyme and a membrane-associated glycosylated enzyme. The two enzymes were found in similar proportions and specific activities in a buffer extract of rat liver acetone powder. By using the latter as a source, the two enzymes were separated, and the glycosylated enzyme was purified to apparent homogeneity by multiple steps, including ConA-Sepharose affinity chromatography and Procion Red-agarose chromatography (yield, 13%; fold purification, approximately 3000). The homogeneous enzyme is a 61.5-kDa disulfide-linked heterodimeric protein, whose serine active site can be labeled with [3H]diisopropyl fluorophosphate. Upon reduction, two subunits of 36 kDa and 30 kDa are generated, and the 30-kDa subunit carries the [3H]diisopropyl fluorophosphate label. The protein has N-linked oligosaccharides that are cleaved by Peptide N-glycosidase F. These chains are cleaved to a much lesser extent by endo-beta-N-acetylglycosaminidase H, indicating that they are mainly complex-type glycans. The enzyme activity has a broad pH optimum range between 6 and 7.5, has no divalent cation requirements, is unaffected by reduction, and is inhibited by the serine active site inhibitors, diisopropyl fluorophosphate (DFP) and diethyl-p-nitrophenyl phosphate (Paraoxon). Kinetic studies with various substrates show that the enzyme is specific for sialic acids and selectively cleaves acetyl groups in the 9-position. It shows little activity against a variety of other natural compounds bearing O-acetyl esters. It appears to deacetylate di-O-acetyl- and tri-O-acetyl-N-acetylneuraminic acids by first cleaving the O-acetyl ester at the 9-position. The 7- and 8-O-acetyl esters then undergo spontaneous migration to the 9-position, where they can be cleaved, resulting in the production of N-acetylneuraminic acid. In view of its interesting substrate specificity, complex N-linked glycan structure, and neutral pH optimum, it is suggested that this enzyme is involved in the regulation of O-acetylation in membrane-bound sialic acids. << Less
J. Biol. Chem. 264:19435-19442(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution.
Zeng Q., Langereis M.A., van Vliet A.L., Huizinga E.G., de Groot R.J.
The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of ... >> More
The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of relatively recent lateral gene transfer events. Here, we report the crystal structure of a coronavirus (CoV) HE in complex with its receptor. We show that CoV HE arose from an influenza C-like HE fusion protein (HEF). In the process, HE was transformed from a trimer into a dimer, whereas remnants of the fusion domain were adapted to establish novel monomer-monomer contacts. Whereas the structural design of the RDE-acetylesterase domain remained unaltered, the HE receptor-binding domain underwent remodeling to such extent that the ligand is now bound in opposite orientation. This is surprising, because the architecture of the HEF site was preserved in influenza A HA over a much larger evolutionary distance, a switch in receptor specificity and extensive antigenic variation notwithstanding. Apparently, HA and HEF are under more stringent selective constraints than HE, limiting their exploration of alternative binding-site topologies. We attribute the plasticity of the CoV HE receptor-binding site to evolutionary flexibility conferred by functional redundancy between HE and its companion spike protein S. Our findings offer unique insights into the structural and functional consequences of independent protein evolution after interviral gene exchange and open potential avenues to broad-spectrum antiviral drug design. << Less
Proc. Natl. Acad. Sci. U.S.A. 105:9065-9069(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases.
Langereis M.A., Zeng Q., Gerwig G.J., Frey B., von Itzstein M., Kamerling J.P., de Groot R.J., Huizinga E.G.
Hemagglutinin esterases (HEs), closely related envelope glycoproteins in influenza C and corona- and toroviruses, mediate reversible attachment to O-acetylated sialic acids (Sias). They do so by acting both as lectins and as receptor-destroying enzymes, functions exerted by separate protein domain ... >> More
Hemagglutinin esterases (HEs), closely related envelope glycoproteins in influenza C and corona- and toroviruses, mediate reversible attachment to O-acetylated sialic acids (Sias). They do so by acting both as lectins and as receptor-destroying enzymes, functions exerted by separate protein domains. HE divergence was accompanied by changes in quaternary structure and in receptor and substrate specificity. The selective forces underlying HE diversity and the molecular basis for Sia specificity are poorly understood. Here we present crystal structures of porcine and bovine torovirus HEs in complex with receptor analogs. Torovirus HEs form homodimers with sialate-O-acetylesterase domains almost identical to corresponding domains in orthomyxo- and coronavirus HEs, but with unique lectin sites. Structure-guided biochemical analysis of the esterase domains revealed that a functionally, but not structurally conserved arginine-Sia carboxylate interaction is critical for the binding and positioning of glycosidically bound Sias in the catalytic pocket. Although essential for efficient de-O-acetylation of Sias, this interaction is not required for catalysis nor does it affect substrate specificity. In fact, the distinct preference of the porcine torovirus enzyme for 9-mono-over 7,9-di-O-acetylated Sias can be explained from a single-residue difference with HEs of more promiscuous specificity. Apparently, esterase and lectin pockets coevolved; also the porcine torovirus HE receptor-binding site seems to have been designed to use 9-mono- and exclude di-O-acetylated Sias, possibly as an adaptation to replication in swine. Our findings shed light on HE evolution and provide fundamental insight into mechanisms of substrate binding, substrate recognition, and receptor selection in this important class of virion proteins. << Less
Proc. Natl. Acad. Sci. U.S.A. 106:15897-15902(2009) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
The murine coronavirus hemagglutinin-esterase receptor-binding site: a major shift in ligand specificity through modest changes in architecture.
Langereis M.A., Zeng Q., Heesters B.A., Huizinga E.G., de Groot R.J.
The hemagglutinin-esterases (HEs), envelope glycoproteins of corona-, toro- and orthomyxoviruses, mediate reversible virion attachment to O-acetylated sialic acids (O-Ac-Sias). They do so through concerted action of distinct receptor-binding ("lectin") and receptor-destroying sialate O-acetylester ... >> More
The hemagglutinin-esterases (HEs), envelope glycoproteins of corona-, toro- and orthomyxoviruses, mediate reversible virion attachment to O-acetylated sialic acids (O-Ac-Sias). They do so through concerted action of distinct receptor-binding ("lectin") and receptor-destroying sialate O-acetylesterase ("esterase") domains. Most HEs target 9-O-acetylated Sias. In one lineage of murine coronaviruses, however, HE esterase substrate and lectin ligand specificity changed dramatically as these viruses evolved to use 4-O-acetylated Sias instead. Here we present the crystal structure of the lectin domain of mouse hepatitis virus (MHV) strain S HE, resolved both in its native state and in complex with a receptor analogue. The data show that the shift from 9-O-to 4-O-Ac-Sia receptor usage primarily entailed a change in ligand binding topology and, surprisingly, only modest changes in receptor-binding site architecture. Our findings illustrate the ease with which viruses can change receptor-binding specificity with potential consequences for host-, organ and/or cell tropism, and for pathogenesis. << Less
PLoS Pathog. 8:E1002492-E1002492(2012) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.
Garcia-Sastre A., Villar E., Manuguerra J.C., Hannoun C., Cabezas J.A.
Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme ... >> More
Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. << Less
Biochem J 273(Pt 2):435-441(1991) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Regulation of O-acetylation of sialic acids by sialate-O-acetyltransferase and sialate-O-acetylesterase activities in childhood acute lymphoblastic leukemia.
Mandal C., Mandal C., Chandra S., Schauer R., Mandal C.
Enhanced expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) and 9-O-acetylated disialoganglioside (9-OAcGD3) was observed on lymphoblasts of childhood acute lymphoblastic leukemia (ALL). Sialate-O-acetyltransferase (SOAT) and sialate-O-acetylesterase (SIAE) are the two main enzymes ... >> More
Enhanced expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) and 9-O-acetylated disialoganglioside (9-OAcGD3) was observed on lymphoblasts of childhood acute lymphoblastic leukemia (ALL). Sialate-O-acetyltransferase (SOAT) and sialate-O-acetylesterase (SIAE) are the two main enzymes responsible for the quantity of the O-acetyl ester groups on sialic acids (Sias). We have earlier shown an enhanced level of SOAT activity, capable of transferring acetyl groups to Sias of glycoconjugates in the microsomes of lymphoblasts of these children. We further observed a decreased SIAE activity in both lysosomal and cytosolic fractions of ALL cell lines and primary cells from bone marrow of patients compared with peripheral blood mononuclear cells from healthy donors, which preferentially hydrolyze O-acetyl groups at C-9 of Sia. The level of O-acetylated Sias in the cytosolic and the lysosomal fractions showed a good correlation with SIAE activity in the corresponding fractions. The apparent K(M) values for SIAE in the lysosomal and the cytosolic fractions from lymphoblasts of ALL patients are 0.38 and 0.39 mM, respectively. These studies demonstrate that both SIAE and SOAT activities seem to be responsible for the enhanced level of Neu5,9Ac(2) in lymphoblasts, which is a hallmark in ALL. This was subsequently confirmed by using an enzyme-linked immunosorbent assay that also demonstrated a steady decline in SOAT activities even in cell lysates of lymphoblasts during successful chemotherapy, like radioactive methods have shown earlier. << Less