Reaction participants Show >> << Hide
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline L-lysine Identifier CHEBI:32551 Charge 1 Formula C6H15N2O2 InChIKeyhelp_outline KDXKERNSBIXSRK-YFKPBYRVSA-O SMILEShelp_outline [NH3+]CCCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 65 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-2-amino-6-oxohexanoate Identifier CHEBI:58321 Charge 0 Formula C6H11NO3 InChIKeyhelp_outline GFXYTQPNNXGICT-YFKPBYRVSA-N SMILEShelp_outline [H]C(=O)CCC[C@H]([NH3+])C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 17 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (Beilstein: 3587191; CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 449 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 528 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22548 | RHEA:22549 | RHEA:22550 | RHEA:22551 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
The antimicrobial activity of marinocine, synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by its lysine oxidase activity.
Lucas-Elio P., Gomez D., Solano F., Sanchez-Amat A.
Marinocine is a broad-spectrum antibacterial protein synthesized by the melanogenic marine bacterium Marinomonas mediterranea. This work describes the basis for the antibacterial activity of marinocine and the identification of the gene coding for this protein. The antibacterial activity is inhibi ... >> More
Marinocine is a broad-spectrum antibacterial protein synthesized by the melanogenic marine bacterium Marinomonas mediterranea. This work describes the basis for the antibacterial activity of marinocine and the identification of the gene coding for this protein. The antibacterial activity is inhibited under anaerobic conditions and by the presence of catalase under aerobic conditions. Marinocine is active only in culture media containing l-lysine. In the presence of this amino acid, marinocine generates hydrogen peroxide, which causes cell death as confirmed by the increased sensitivity to marinocine of Escherichia coli strains mutated in catalase activity. The gene coding for this novel enzyme was cloned using degenerate PCR with primers designed based on conserved regions in the antimicrobial protein AlpP, synthesized by Pseudoalteromonas tunicata, and some hypothetical proteins. The gene coding for marinocine has been named lodA, standing for lysine oxidase, and it seems to form part of an operon with a second gene, lodB, that codes for a putative dehydrogenase flavoprotein. The identity of marinocine as LodA has been demonstrated by N-terminal sequencing of purified marinocine and generation of lodA mutants that lose their antimicrobial activity. This is the first report on a bacterial lysine oxidase activity and the first time that a gene encoding this activity has been cloned. << Less
-
A novel type of lysine oxidase: L-lysine-epsilon-oxidase.
Gomez D., Lucas-Elio P., Sanchez-Amat A., Solano F.
The melanogenic marine bacterium M. mediterranea synthesizes marinocine, a protein with antibacterial activity. We cloned the gene coding for this protein and named it lodA [P. Lucas-Elío, P. Hernández, A. Sanchez-Amat, F. Solano, Purification and partial characterization of marinocine, a new broa ... >> More
The melanogenic marine bacterium M. mediterranea synthesizes marinocine, a protein with antibacterial activity. We cloned the gene coding for this protein and named it lodA [P. Lucas-Elío, P. Hernández, A. Sanchez-Amat, F. Solano, Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea. Biochim. Biophys. Acta 1721 (2005) 193-203; P. Lucas-Elío, D. Gómez, F. Solano, A. Sanchez-Amat, The antimicrobial activity of marinocine, synthesized by M. mediterranea, is due to the hydrogen peroxide generated by its lysine oxidase activity. J. Bacteriol. 188 (2006) 2493-2501]. Now, we show that this protein is a new type of lysine oxidase which catalyzes the oxidative deamination of free L-lysine into 6-semialdehyde 2-aminoadipic acid, ammonia and hydrogen peroxide. This new enzyme is compared to other enzymes related to lysine transformation. Two different groups have been used for comparison. Enzymes in the first group lead to 2-aminoadipic acid as a final product. The second one would be enzymes catalyzing the oxidative deamination of lysine releasing H2O2, namely lysine-alpha-oxidase (LalphaO) and lysyl oxidase (Lox). Kinetic properties, substrate specificity and inhibition pattern show clear differences with all above mentioned lysine-related enzymes. Thus, we propose to rename this enzyme lysine-epsilon-oxidase (lod for the gene) instead of marinocine. Lod shows high stereospecificity for free L-lysine, it is inhibited by substrate analogues, such as cadaverine and 6-aminocaproic acid, and also by beta-aminopropionitrile, suggesting the existence of a tyrosine-derived quinone cofactor at its active site. << Less
Biochim. Biophys. Acta 1764:1577-1585(2006) [PubMed] [EuropePMC]