Reaction participants Show >> << Hide
- Name help_outline (S)-tetrahydrocolumbamine Identifier CHEBI:17772 (CAS: 483-34-1) help_outline Charge 0 Formula C20H23NO4 InChIKeyhelp_outline KDFKJOFJHSVROC-INIZCTEOSA-N SMILEShelp_outline [H][C@@]12Cc3ccc(OC)c(OC)c3CN1CCc1cc(OC)c(O)cc21 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-methionine Identifier CHEBI:59789 Charge 1 Formula C15H23N6O5S InChIKeyhelp_outline MEFKEPWMEQBLKI-AIRLBKTGSA-O SMILEShelp_outline C[S+](CC[C@H]([NH3+])C([O-])=O)C[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 868 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (S)-tetrahydropalmatine Identifier CHEBI:16563 (CAS: 483-14-7) help_outline Charge 0 Formula C21H25NO4 InChIKeyhelp_outline AEQDJSLRWYMAQI-KRWDZBQOSA-N SMILEShelp_outline [H][C@@]12Cc3ccc(OC)c(OC)c3CN1CCc1cc(OC)c(OC)cc21 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline S-adenosyl-L-homocysteine Identifier CHEBI:57856 Charge 0 Formula C14H20N6O5S InChIKeyhelp_outline ZJUKTBDSGOFHSH-WFMPWKQPSA-N SMILEShelp_outline Nc1ncnc2n(cnc12)[C@@H]1O[C@H](CSCC[C@H]([NH3+])C([O-])=O)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 792 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22536 | RHEA:22537 | RHEA:22538 | RHEA:22539 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning of columbamine O-methyltransferase from cultured Coptis japonica cells.
Morishige T., Dubouzet E., Choi K.-B., Yazaki K., Sato F.
To identify all of the O-methyltransferase genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica cells, we sequenced 1014 cDNA clones isolated from high-alkaloid-producing cultured cells of C. japonica. Among them, we found all three reported O-methyltransferases and an O-methylt ... >> More
To identify all of the O-methyltransferase genes involved in isoquinoline alkaloid biosynthesis in Coptis japonica cells, we sequenced 1014 cDNA clones isolated from high-alkaloid-producing cultured cells of C. japonica. Among them, we found all three reported O-methyltransferases and an O-methyltransferase-like cDNA clone (CJEST64). This cDNA was quite similar to S-adenosyl-l-methionine:coclaurine 6-O-methyltransferase and S-adenosyl-l-methionine:isoflavone 7-O-methyltransferase. As S-adenosyl-l-methionine:columbamine O-methyltransferase, which catalyzes the conversion of columbamine to palmatine, is one of the remaining unelucidated components in isoquinoline alkaloid biosynthesis in C. japonica, we heterologously expressed the protein in Escherichia coli and examined the activity of columbamine O-methyltransferase. The recombinant protein clearly showed O-methylation activity using columbamine, as well as (S)-tetrahydrocolumbamine, (S)-, (R,S)-scoulerine and (R,S)-2,3,9,10-tetrahydroxyprotoberberine as substrates. This result clearly indicated that EST analysis was useful for isolating the candidate gene in a relatively well-characterized biosynthetic pathway. The relationship between the structure and substrate recognition of the O-methyltransferases involved in isoquinoline alkaloid biosynthesis, and a reconsideration of the biosynthetic pathway to palmatine are discussed. << Less
Eur. J. Biochem. 269:5659-5667(2002) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.