Enzymes
UniProtKB help_outline | 47 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline N-[(5S)-5-amino-5-carboxypentanoyl]-L-cysteinyl-D-valine Identifier CHEBI:58572 Charge -1 Formula C14H24N3O6S InChIKeyhelp_outline BYEIJZFKOAXBBV-ATZCPNFKSA-M SMILEShelp_outline CC(C)[C@@H](NC(=O)[C@H](CS)NC(=O)CCC[C@H]([NH3+])C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline O2 Identifier CHEBI:15379 (CAS: 7782-44-7) help_outline Charge 0 Formula O2 InChIKeyhelp_outline MYMOFIZGZYHOMD-UHFFFAOYSA-N SMILEShelp_outline O=O 2D coordinates Mol file for the small molecule Search links Involved in 2,709 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline isopenicillin N Identifier CHEBI:58399 Charge -1 Formula C14H20N3O6S InChIKeyhelp_outline MIFYHUACUWQUKT-GTQWGBSQSA-M SMILEShelp_outline [H][C@]12SC(C)(C)[C@@H](N1C(=O)[C@H]2NC(=O)CCC[C@H]([NH3+])C([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22428 | RHEA:22429 | RHEA:22430 | RHEA:22431 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
M-CSA help_outline |
Publications
-
The reaction cycle of isopenicillin N synthase observed by X-ray diffraction.
Burzlaff N.I., Rutledge P.J., Clifton I.J., Hensgens C.M.H., Pickford M., Adlington R.M., Roach P.L., Baldwin J.E.
Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the biosynthesis of isopenicillin N (IPN), the precursor of all penicillins and cephalosporins. The key steps in this reaction are the two iron-dioxygen-mediated ring closures of the tripeptide delta-(L-alpha-aminoadipoy ... >> More
Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the biosynthesis of isopenicillin N (IPN), the precursor of all penicillins and cephalosporins. The key steps in this reaction are the two iron-dioxygen-mediated ring closures of the tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV). It has been proposed that the four-membered beta-lactam ring forms initially, associated with a highly oxidized iron(iv)-oxo (ferryl) moiety, which subsequently mediates closure of the five-membered thiazolidine ring. Here we describe observation of the IPNS reaction in crystals by X-ray crystallography. IPNS Fe2+ substrate crystals were grown anaerobically, exposed to high pressures of oxygen to promote reaction and frozen, and their structures were elucidated by X-ray diffraction. Using the natural substrate ACV, this resulted in the IPNS x Fe2+ x IPN product complex. With the substrate analogue, delta-(L-alpha-aminoadipoyl)-L-cysteinyl-L-S-methylcysteine (ACmC) in the crystal, the reaction cycle was interrupted at the monocyclic stage. These mono- and bicyclic structures support our hypothesis of a two-stage reaction sequence leading to penicillin. Furthermore, the formation of a monocyclic sulphoxide product from ACmC is most simply explained by the interception of a high-valency iron-oxo species. << Less
-
Alternative oxidation by isopenicillin N synthase observed by X-ray diffraction.
Ogle J.M., Clifton I.J., Rutledge P.J., Elkins J.M., Burzlaff N.I., Adlington R.M., Roach P.L., Baldwin J.E.
<h4>Background</h4>Isopenicillin N synthase (IPNS) catalyses formation of bicyclic isopenicillin N, precursor to all penicillin and cephalosporin antibiotics, from the linear tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine. IPNS is a non-haem iron(II)-dependent enzyme which utilises t ... >> More
<h4>Background</h4>Isopenicillin N synthase (IPNS) catalyses formation of bicyclic isopenicillin N, precursor to all penicillin and cephalosporin antibiotics, from the linear tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine. IPNS is a non-haem iron(II)-dependent enzyme which utilises the full oxidising potential of molecular oxygen in catalysing the bicyclisation reaction. The reaction mechanism is believed to involve initial formation of the beta-lactam ring (via a thioaldehyde intermediate) to give an iron(IV)-oxo species, which then mediates closure of the 5-membered thiazolidine ring.<h4>Results</h4>Here we report experiments employing time-resolved crystallography to observe turnover of an isosteric substrate analogue designed to intercept the catalytic pathway at an early stage. Reaction in the crystalline enzyme-substrate complex was initiated by the application of high-pressure oxygen, and subsequent flash freezing allowed an oxygenated product to be trapped, bound at the iron centre. A mechanism for formation of the observed thiocarboxylate product is proposed.<h4>Conclusions</h4>In the absence of its natural reaction partner (the N-H proton of the L-cysteinyl-D-valine amide bond), the proposed hydroperoxide intermediate appears to attack the putative thioaldehyde species directly. These results shed light on the events preceding beta-lactam closure in the IPNS reaction cycle, and enhance our understanding of the mechanism for reaction of the enzyme with its natural substrate. << Less
-
Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation.
Roach P.L., Clifton I.J., Hensgens C.M., Shibata N., Schofield C.J., Hajdu J., Baldwin J.E.
The biosynthesis of penicillin and cephalosporin antibiotics in microorganisms requires the formation of the bicyclic nucleus of penicillin. Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the reaction of a tripeptide, delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine ... >> More
The biosynthesis of penicillin and cephalosporin antibiotics in microorganisms requires the formation of the bicyclic nucleus of penicillin. Isopenicillin N synthase (IPNS), a non-haem iron-dependent oxidase, catalyses the reaction of a tripeptide, delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV), and dioxygen to form isopenicillin N and two water molecules. Mechanistic studies suggest the reaction is initiated by ligation of the substrate thiolate to the iron centre, and proceeds through an enzyme-bound monocyclic intermediate. Here we report the crystal structure of IPNS complexed to ferrous iron and ACV, determined to 1.3 A resolution. Based on the structure, we propose a mechanism for penicillin formation that involves ligation of ACV to the iron centre, creating a vacant iron coordination site into which dioxygen can bind. Subsequently, iron-dioxygen and iron-oxo species remove the requisite hydrogens from ACV without the direct assistance of protein residues. The crystal structure of the complex with the dioxygen analogue, NO and ACV bound to the active-site iron supports this hypothesis. << Less