Reaction participants Show >> << Hide
- Name help_outline cis,trans-4-hydroxymuconate semialdehyde Identifier CHEBI:58434 Charge -1 Formula C6H5O4 InChIKeyhelp_outline NJOJKLHNRGFVOS-REDYYMJGSA-M SMILEShelp_outline C(=C/C(=C\C=O)/O)/C(=O)[O-] 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,190 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline maleylacetate Identifier CHEBI:16468 Charge -2 Formula C6H4O5 InChIKeyhelp_outline SOXXPQLIZIPMIZ-UPHRSURJSA-L SMILEShelp_outline [O-]C(=O)CC(=O)\C=C/C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,120 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22420 | RHEA:22421 | RHEA:22422 | RHEA:22423 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Peudomonas sp. 1-7.
Zhang S., Sun W., Xu L., Zheng X., Chu X., Tian J., Wu N., Fan Y.
<h4>Background</h4>para-Nitrophenol (PNP), a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited.<h4>Results</h4>Pseudomonas sp.1-7 was isolated from methyl parathion (MP)-polluted ... >> More
<h4>Background</h4>para-Nitrophenol (PNP), a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited.<h4>Results</h4>Pseudomonas sp.1-7 was isolated from methyl parathion (MP)-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ) and 4-nitrocatechol (4-NC) were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT) pathway (also referred to as the 4-NC pathway). A gene cluster (pdcEDGFCBA) was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA), p-benzoquinone (BQ) reductase (PdcB), hydroxyquinol (BT) 1,2-dioxygenase (PdcC), maleylacetate (MA) reductase (PdcF), 4-hydroxymuconic semialdehyde (4-HS) dehydrogenase (PdcG), and hydroquinone (HQ) 1,2-dioxygenase (PdcDE). Four genes (pdcDEFG) were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays.<h4>Conclusions</h4>The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism. << Less
-
Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp.
Spain J.C., Gibson D.T.
A Moraxella strain grew on p-nitrophenol with stoichiometric release of nitrite. During induction of the enzymes for growth on p-nitrophenol, traces of hydroquinone accumulated in the medium. In the presence of 2,2'-dipyridyl, p-nitrophenol was converted stoichiometrically to hydroquinone. Particu ... >> More
A Moraxella strain grew on p-nitrophenol with stoichiometric release of nitrite. During induction of the enzymes for growth on p-nitrophenol, traces of hydroquinone accumulated in the medium. In the presence of 2,2'-dipyridyl, p-nitrophenol was converted stoichiometrically to hydroquinone. Particulate enzymes catalyzed the conversion of p-nitrophenol to hydroquinone in the presence of NADPH and oxygen. Soluble enzymes catalyzed the conversion of hydroquinone to gamma-hydroxymuconic semialdehyde, which was identified by high-performance liquid chromatography (HPLC)-mass spectroscopy. Upon addition of catalytic amounts of NAD, gamma-hydroxymuconic semialdehyde was converted to beta-ketoadipic acid. In the presence of pyruvate and lactic dehydrogenase, substrate amounts of NAD were required and gamma-hydroxymuconic semialdehyde was converted to maleylacetic acid, which was identified by HPLC-mass spectroscopy. Similar results were obtained when the reaction was carried out in the presence of potassium ferricyanide. Extracts prepared from p-nitrophenol-growth cells also contained an enzyme that catalyzed the oxidation of 1,2,4-benzenetriol to maleylacetic acid. The enzyme responsible for the oxidation of 1,2,4-benzenetriol was separated from the enzyme responsible for hydroquinone oxidation by DEAE-cellulose chromatography. The results indicate that the pathway for biodegradation of p-nitrophenol involves the initial removal of the nitro group as nitrite and formation of hydroquinone. 1,4-Benzoquinone, a likely intermediate in the initial reaction, was not detected. Hydroquinone is converted to beta-ketoadipic acid via gamma-hydroxymuconic semialdehyde and maleylacetic acid. << Less
Appl Environ Microbiol 57:812-819(1991) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.