Enzymes
UniProtKB help_outline | 4 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol Identifier CHEBI:53650 Charge 0 Formula C17H20O6 InChIKeyhelp_outline PPZSOILKWHVNNS-UHFFFAOYSA-N SMILEShelp_outline COc1cc(ccc1O)C(O)C(CO)Oc1ccccc1OC 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O2 Identifier CHEBI:16240 (CAS: 7722-84-1) help_outline Charge 0 Formula H2O2 InChIKeyhelp_outline MHAJPDPJQMAIIY-UHFFFAOYSA-N SMILEShelp_outline [H]OO[H] 2D coordinates Mol file for the small molecule Search links Involved in 452 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline guaiacol Identifier CHEBI:28591 (CAS: 90-05-1) help_outline Charge 0 Formula C7H8O2 InChIKeyhelp_outline LHGVFZTZFXWLCP-UHFFFAOYSA-N SMILEShelp_outline COc1ccccc1O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline vanillin Identifier CHEBI:18346 (Beilstein: 472792; CAS: 121-33-5) help_outline Charge 0 Formula C8H8O3 InChIKeyhelp_outline MWOOGOJBHIARFG-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)C1=CC(OC)=C(O)C=C1 2D coordinates Mol file for the small molecule Search links Involved in 14 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline glycolaldehyde Identifier CHEBI:17071 (CAS: 141-46-8) help_outline Charge 0 Formula C2H4O2 InChIKeyhelp_outline WGCNASOHLSPBMP-UHFFFAOYSA-N SMILEShelp_outline [H]C(=O)CO 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22396 | RHEA:22397 | RHEA:22398 | RHEA:22399 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn(2+) and different aromatic substrates.
Ruiz-Duenas F.J., Martinez M.J., Martinez A.T.
A versatile ligninolytic peroxidase has been cloned from Pleurotus eryngii and its allelic variant MnPL2 expressed in Aspergillus nidulans, with properties similar to those of the mature enzyme from P. eryngii. These include the ability to oxidize Mn(2+) and aromatic substrates, confirming that th ... >> More
A versatile ligninolytic peroxidase has been cloned from Pleurotus eryngii and its allelic variant MnPL2 expressed in Aspergillus nidulans, with properties similar to those of the mature enzyme from P. eryngii. These include the ability to oxidize Mn(2+) and aromatic substrates, confirming that this is a new peroxidase type sharing catalytic properties of lignin peroxidase and manganese peroxidase. << Less
Appl Environ Microbiol 65:4705-4707(1999) [PubMed] [EuropePMC]
-
Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii.
Martinez M.J., Ruiz-Duenas F.J., Guillen F., Martinez A.T.
The ligninolytic basidiomycetes Pleurotus eryngii, Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus sajor-caju did not exhibit detectable levels of manganese peroxidase (MP) when grown in liquid media with ammonium tartrate as N source. However, after examination of cells grown on differen ... >> More
The ligninolytic basidiomycetes Pleurotus eryngii, Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus sajor-caju did not exhibit detectable levels of manganese peroxidase (MP) when grown in liquid media with ammonium tartrate as N source. However, after examination of cells grown on different organic N-based media, high MP activity was obtained in peptone medium, up to nearly 3 U/ml in cultures of P. eryngii. Moreover, Mn2+ supplementation was not used to produce MP, since all Mn2+ concentrations assayed (1-4000 microM) inhibited production of this enzyme in liquid medium. Two MP isoenzymes were purified to homogeneity from shaken or stationary cultures of P. eryngii grown in peptone medium. The purification process (which included chromatography on Biorad Q-cartridge, Sephacryl S-200 and Mono-Q) attained 56% activity yield with a purification factor of 25. The isoenzymes differed in pI (3.75 and 3.65), N-terminal sequence and some catalytic properties. They were in some aspects (e.g, molecular mass of 43 kDa) similar to Phanerochaete chrysosporium MP but exhibited some distinct characteristics, including Mn(2+)-independent peroxidase activities against 2,6-dimethoxyphenol and veratryl alcohol, and higher resistance to H2O2. Recent studies have shown that MP are ubiquitous enzymes in ligninolytic fungi, but the results obtained suggest that differences in catalytic properties probably exist between different Mn(2+)-oxidizing peroxidases produced by these fungi. << Less
-
Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii.
Ruiz-Duenas F.J., Martinez M.J., Martinez A.T.
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30- ... >> More
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30-amino-acid signal peptide, was isolated as two alleles corresponding to the two isoforms. The alleles differ in three amino acid residues and in a seven nucleotide deletion affecting a single metal response element in the promoter. When compared with Phanerochaete chrysosporium peroxidases, the new enzyme appears closer to lignin peroxidase (LiP) than to Mn-dependent peroxidase (MnP) isoenzymes (58-60% and 55% identity respectively). The molecular model built using crystal structures of three fungal peroxidases as templates, also showed high structural affinity with LiP (C alpha-distance 1.2 A). However, this peroxidase includes a Mn2+ binding site formed by three acidic residues (E36, E40 and D175) near the haem internal propionate, which accounts for the ability to oxidize Mn2+. Its capability to oxidize aromatic substrates could involve interactions with aromatic residues at the edge of the haem channel. Another possibility is long-range electron transfer, e.g. from W164, which occupies the same position of LiP W171 recently reported as involved in the catalytic cycle of LiP. << Less
-
A search for ligninolytic peroxidases in the fungus pleurotus eryngii involving alpha-keto-gamma-thiomethylbutyric acid and lignin model dimers.
Caramelo L., Martinez M.J., Martinez A.T.
Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleu ... >> More
Because there is some controversy concerning the ligninolytic enzymes produced by Pleurotus species, ethylene release from alpha-keto-gamma-thiomethylbutyric acid (KTBA), as described previously for Phanerochaete chrysosporium lignin peroxidase (LiP), was used to assess the oxidative power of Pleurotus eryngii cultures and extracellular proteins. Lignin model dimers were used to confirm the ligninolytic capabilities of enzymes isolated from liquid and solid-state fermentation (SSF) cultures. Three proteins that oxidized KTBA in the presence of veratryl alcohol and H2O2 were identified (two proteins were found in liquid cultures, and one protein was found in SSF cultures). These proteins are versatile peroxidases that act on Mn2+, as well as on simple phenols and veratryl alcohol. The two peroxidases obtained from the liquid culture were able to degrade a nonphenolic beta-O-4 dimer, yielding veratraldehyde, as well as a phenolic dimer which is not efficiently oxidized by P. chrysosporium peroxidases. The former reaction is characteristic of LiP. The third KTBA-oxidizing peroxidase oxidized only the phenolic dimer (in the presence of Mn2+). Finally, a fourth Mn2+-oxidizing peroxidase was identified in the SSF cultures on the basis of its ability to oxidize KTBA in the presence of Mn2+. This enzyme is related to the Mn-dependent peroxidase of P. chrysosporium because it did not exhibit activity with veratryl alcohol and Mn-independent activity with dimers. These results show that P. eryngii produces three types of peroxidases that have the ability to oxidize lignin but lacks a typical LiP. Similar enzymes (in terms of N-terminal sequence and catalytic properties) are produced by other Pleurotus species. Some structural aspects of P. eryngii peroxidases related to the catalytic properties are discussed. << Less
Appl Environ Microbiol 65:916-922(1999) [PubMed] [EuropePMC]
-
Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites.
Camarero S., Sarkar S., Ruiz-Duenas F.J., Martinez M.J., Martinez A.T.
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its ma ... >> More
Two major peroxidases are secreted by the fungus Pleurotus eryngii in lignocellulose cultures. One is similar to Phanerochaete chrysosporium manganese-dependent peroxidase. The second protein (PS1), although catalyzing the oxidation of Mn2+ to Mn3+ by H2O2, differs from the above enzymes by its manganese-independent activity enabling it to oxidize substituted phenols and synthetic dyes, as well as the lignin peroxidase (LiP) substrate veratryl alcohol. This is by a mechanism similar to that reported for LiP, as evidenced by p-dimethoxybenzene oxidation yielding benzoquinone. The apparent kinetic constants showed high activity on Mn2+, but methoxyhydroquinone was the natural substrate with the highest enzyme affinity (this and other phenolic substrates are not efficiently oxidized by the P. chrysosporium peroxidases). A three-dimensional model was built using crystal models from four fungal peroxidase as templates. The model suggests high structural affinity of this versatile peroxidase with LiP but shows a putative Mn2+ binding site near the internal heme propionate, involving Glu36, Glu40, and Asp181. A specific substrate interaction site for Mn2+ is supported by kinetic data showing noncompetitive inhibition with other peroxidase substrates. Moreover, residues reported as involved in LiP interaction with veratryl alcohol and other aromatic substrates are present in peroxidase PS1 such as His82 at the heme-channel opening, which is remarkably similar to that of P. chrysosporium LiP, and Trp170 at the protein surface. These residues could be involved in two different hypothetical long range electron transfer pathways from substrate (His82-Ala83-Asn84-His47-heme and Trp170-Leu171-heme) similar to those postulated for LiP. << Less
-
A new versatile peroxidase from Pleurotus.
Ruiz-Duenas F.J., Camarero S., Perez-Boada M., Martinez M.J., Martinez A.T.
Lignin peroxidase (LiP) and manganese peroxidase (MnP) have been investigated in Phanerochaete chrysosporium. A third ligninolytic peroxidase has been described in Pleurotus and Bjerkandera. Two of these versatile peroxidases (VPs) have been cloned, sequenced and characterized. They have high affi ... >> More
Lignin peroxidase (LiP) and manganese peroxidase (MnP) have been investigated in Phanerochaete chrysosporium. A third ligninolytic peroxidase has been described in Pleurotus and Bjerkandera. Two of these versatile peroxidases (VPs) have been cloned, sequenced and characterized. They have high affinity for Mn(2+), hydroquinones and dyes, and also oxidize veratryl alcohol, dimethoxybenzene and lignin dimers. The deduced sequences show higher identity with Ph. chrysosporium LiP than MnP, but the molecular models obtained include a Mn(2+)-binding site. Concerning aromatic substrate oxidation, Pl. eryngii VP shows a putative long-range electron transfer pathway from an exposed trytophan to haem. Mutagenesis and chemical modification of this tryptophan and the acidic residues forming the Mn(2+)-binding site confirmed their role in catalysis. The existence of several substrate oxidation sites is supported further by biochemical evidence. Residue conservation in other fungal peroxidases is discussed. << Less
-
Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways.
Perez-Boada M., Ruiz-Duenas F.J., Pogni R., Basosi R., Choinowski T., Martinez M.J., Piontek K., Martinez A.T.
Versatile peroxidases (VP), a recently described family of ligninolytic peroxidases, show a hybrid molecular architecture combining different oxidation sites connected to the heme cofactor. High-resolution crystal structures as well as homology models of VP isoenzymes from the fungus Pleurotus ery ... >> More
Versatile peroxidases (VP), a recently described family of ligninolytic peroxidases, show a hybrid molecular architecture combining different oxidation sites connected to the heme cofactor. High-resolution crystal structures as well as homology models of VP isoenzymes from the fungus Pleurotus eryngii revealed three possibilities for long-range electron transfer for the oxidation of high redox potential aromatic compounds. The possible pathways would start either at Trp164 or His232 of isoenzyme VPL, and at His82 or Trp170 of isoenzyme VPS1. These residues are exposed, and less than 11 A apart from the heme. With the purpose of investigating their functionality, two single mutations (W164S and H232F) and one double mutation (W164S/P76H) were introduced in VPL that: (i) removed the two pathways in this isoenzyme; and (ii) incorporated the absent putative pathway. Analysis of the variants showed that Trp164 is required for oxidation of two high redox potential model substrates (veratryl alcohol and Reactive Black 5), whereas the two other pathways (starting at His232 and His82) are not involved in long-range electron transfer (LRET). None of the mutations affected Mn2+ oxidation, which would take place at the opposite side of the enzyme. Substitution of Trp164 by His also resulted in an inactive variant, indicating that an indole side-chain is required for activity. It is proposed that substrate oxidation occurs via a protein-based radical. For the first time in a ligninolytic peroxidase such an intermediate species could be detected by low-temperature electron paramagnetic resonance of H2O2-activated VP, and was found to exist at Trp164 as a neutral radical. The H2O2-activated VP was self-reduced in the absence of reducing substrates. Trp164 is also involved in this reaction, which in the W164S variant was blocked at the level of compound II. When analyzing VP crystal structures close to atomic resolution, no hydroxylation of the Trp164 Cbeta atom was observed (even after addition of several equivalents of H2O2). This is in contrast to lignin peroxidase Trp171. Analysis of the crystal structures of both peroxidases showed differences in the environment of the protein radical-forming residue that could affect its reactivity. These variations would also explain differences found for the oxidation of some high redox potential aromatic substrates. << Less
-
NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii.
Banci L., Camarero S., Martinez A.T., Martinez M.J., Perez-Boada M., Pierattelli R., Ruiz-Duenas F.J.
Nuclear magnetic resonance spectroscopy has been used to characterize the versatile peroxidase from Pleurotus eryngii, both in the resting state and in the cyanide-inhibited form. The assignment of most of the hyperfine-shifted resonances has been achieved by two-dimensional NMR, allowing the comp ... >> More
Nuclear magnetic resonance spectroscopy has been used to characterize the versatile peroxidase from Pleurotus eryngii, both in the resting state and in the cyanide-inhibited form. The assignment of most of the hyperfine-shifted resonances has been achieved by two-dimensional NMR, allowing the comparison of the present system with other ligninolytic peroxidases. This information has enabled a detailed analysis of the interaction of the enzyme with one of its reducing substrates, Mn(II). Furthermore, comparison with the data collected on a mutant in the putative Mn(II) binding site, and an analysis of the enzyme kinetic properties, shed light on the factors affecting the function of this novel peroxidase. << Less
-
A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta.
Heinfling A., Ruiz-Duenas F.J., Martinez M.J., Bergbauer M., Szewzyk U., Martinez A.T.
A novel peroxidase, oxidizing Mn2+ and different aromatic compounds, was isolated. Hydroquinones, substituted phenols, dyes, other aromatic compounds and Mn2+ were compared as reducing substrates, and conclusions presented in the light of a molecular model built by homology modeling. The enzymes s ... >> More
A novel peroxidase, oxidizing Mn2+ and different aromatic compounds, was isolated. Hydroquinones, substituted phenols, dyes, other aromatic compounds and Mn2+ were compared as reducing substrates, and conclusions presented in the light of a molecular model built by homology modeling. The enzymes showed the fastest reaction rates with Mn2+, but the highest affinity corresponded to hydroquinones and dyes. Oxidation of Reactive Black 5 (an azo-dye not oxidized by Mn3+) was non-competitively inhibited by Mn2+. These findings, together with identification of putative Mn-binding site (involving Glu36, Glu40, Asp175 and inner heme propionate) and long-range electron transfer pathways, indicate that different sites are involved in substrate oxidation. << Less
-
The cloning of a new peroxidase found in lignocellulose cultures of Pleurotus eryngii and sequence comparison with other fungal peroxidases.
Camarero S., Ruiz-Duenas F.J., Sarkar S., Martinez M.J., Martinez A.T.
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the dedu ... >> More
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the deduced amino acid sequence consists of a 339-residue mature protein with a 31-residue signal peptide. Several putative response elements were identified in the promoter region. Amino acid residues involved in oxidation of Mn(2+) and aromatic substrates by direct electron transfer to heme and long-range electron transfer from superficial residues as predicted by analogy with Phanerochaete chrysosporium MnP and LiP, respectively. A dendrogram is presented illustrating sequence relationships between 29 fungal peroxidases. << Less