Enzymes
UniProtKB help_outline | 471 proteins |
Enzyme classes help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline L-quinate Identifier CHEBI:29751 Charge -1 Formula C7H11O6 InChIKeyhelp_outline AAWZDTNXLSGCEK-WYWMIBKRSA-M SMILEShelp_outline O[C@@H]1C[C@@](O)(C[C@@H](O)[C@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NAD+ Identifier CHEBI:57540 (Beilstein: 3868403) help_outline Charge -1 Formula C21H26N7O14P2 InChIKeyhelp_outline BAWFJGJZGIEFAR-NNYOXOHSSA-M SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,186 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 3-dehydroquinate Identifier CHEBI:32364 Charge -1 Formula C7H9O6 InChIKeyhelp_outline WVMWZWGZRAXUBK-SYTVJDICSA-M SMILEShelp_outline O[C@@H]1C[C@@](O)(CC(=O)[C@H]1O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 7 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADH Identifier CHEBI:57945 (Beilstein: 3869564) help_outline Charge -2 Formula C21H27N7O14P2 InChIKeyhelp_outline BOPGDPNILDQYTO-NNYOXOHSSA-L SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,116 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22364 | RHEA:22365 | RHEA:22366 | RHEA:22367 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Site-directed mutagenesis of the active site region in the quinate/shikimate 5-dehydrogenase YdiB of Escherichia coli.
Lindner H.A., Nadeau G., Matte A., Michel G., Menard R., Cygler M.
YdiB and its paralog AroE are members of the quinate/shikimate 5-dehdrogenase family. Enzymes from this family function in the shikimate pathway that is essential for survival of microorganisms and plants and represent potential drug targets. Recent YdiB and AroE crystal structures revealed the pr ... >> More
YdiB and its paralog AroE are members of the quinate/shikimate 5-dehdrogenase family. Enzymes from this family function in the shikimate pathway that is essential for survival of microorganisms and plants and represent potential drug targets. Recent YdiB and AroE crystal structures revealed the presence of a NAD(P)-binding and a catalytic domain. We carried out site-directed mutagenesis of 8 putative active site residues in YdiB from Escherichia coli and analyzed structural and kinetic properties of the mutant enzymes. Our data indicate critical roles for an invariant lysine and aspartate residue in substrate binding and allowed us to differentiate between two previously proposed models for the binding of the substrate in the active site. Comparison of several YdiB and AroE structures led us to conclude that, upon cofactor binding and domain closure, the 2 identified binding residues are repositioned to bind to the substrate. Although the lysine residue contributes to some extent to the stabilization of the transition state, we did not identify any residue as catalytically essential. This indicates that catalysis does not operate through a general acid-base mechanism, as thought originally. Our improved understanding of the medically and agriculturally important quinate/shikimate 5-dehydrogenase family at the molecular level may prove useful in the development of novel herbicides and antimicrobial agents. << Less
J. Biol. Chem. 280:7162-7169(2005) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
1.6 Angstroms structure of an NAD(+)-dependent quinate dehydrogenase from Corynebacterium glutamicum.
Schoepe J., Niefind K., Schomburg D.
To date, three different functional classes of bacterial shikimate/quinate dehydrogenases have been identified and are referred to as AroE, SDH-L and YdiB. The enzyme AroE and the catalytically much slower SDH-L clearly prefer NADP+/NADPH as the cosubstrate and are specific for (dehydro-)shikimate ... >> More
To date, three different functional classes of bacterial shikimate/quinate dehydrogenases have been identified and are referred to as AroE, SDH-L and YdiB. The enzyme AroE and the catalytically much slower SDH-L clearly prefer NADP+/NADPH as the cosubstrate and are specific for (dehydro-)shikimate, whereas in YdiB the differences in affinity for NADP+/NADPH versus NAD+/NADH as well as for (dehydro-)shikimate versus (dehydro-)quinate are marginal. These three subclasses have a similar three-dimensional fold and hence all belong to the same structural class of proteins. In this paper, the crystal structure of an enzyme from Corynebacterium glutamicum is presented that clearly prefers NAD+ as a cosubstrate and that demonstrates a higher catalytic efficiency for quinate rather than shikimate. While the kinetic constants for this enzyme clearly differ from those reported for AroE, SDH-L and YdiB, the three-dimensional structure of this protein is similar to members of these three subclasses. Thus, the enzyme described here belongs to a new functional class of the shikimate/quinate dehydrogenase family. The different substrate and cosubstrate specificities of this enzyme relative to all other known bacterial shikimate/quinate dehydrogenases are discussed by means of analyzing the crystal structure and derived models. It is proposed that in contrast to shikimate, quinate forms a hydrogen bond to the NAD+. In addition, it is suggested that the hydroxyl group of a conserved active-site threonine hydrogen bonds to quinate more effectively than to shikimate. Also, the hydroxyl group of a conserved tyrosine approaches the carboxylate group of quinate more closely than it does the carboxylate group of shikimate. Taken together, these factors most likely lead to a lower Michaelis constant and therefore to a higher catalytic efficiency for quinate. The active site of the dehydrogenase reported here is larger than those of other known shikimate/quinate dehydrogenases, which may explain why quinate is easily accommodated within the catalytic cleft. << Less
Acta Crystallogr. D 64:803-809(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Structures of shikimate dehydrogenase AroE and its paralog YdiB. A common structural framework for different activities.
Michel G., Roszak A.W., Sauve V., Maclean J., Matte A., Coggins J.R., Cygler M., Lapthorn A.J.
Shikimate dehydrogenase catalyzes the fourth step of the shikimate pathway, the essential route for the biosynthesis of aromatic compounds in plants and microorganisms. Absent in metazoans, this pathway is an attractive target for nontoxic herbicides and drugs. Escherichia coli expresses two shiki ... >> More
Shikimate dehydrogenase catalyzes the fourth step of the shikimate pathway, the essential route for the biosynthesis of aromatic compounds in plants and microorganisms. Absent in metazoans, this pathway is an attractive target for nontoxic herbicides and drugs. Escherichia coli expresses two shikimate dehydrogenase paralogs, the NADP-specific AroE and a putative enzyme YdiB. Here we characterize YdiB as a dual specificity quinate/shikimate dehydrogenase that utilizes either NAD or NADP as a cofactor. Structures of AroE and YdiB with bound cofactors were determined at 1.5 and 2.5 A resolution, respectively. Both enzymes display a similar architecture with two alpha/beta domains separated by a wide cleft. Comparison of their dinucleotide-binding domains reveals the molecular basis for cofactor specificity. Independent molecules display conformational flexibility suggesting that a switch between open and closed conformations occurs upon substrate binding. Sequence analysis and structural comparison led us to propose the catalytic machinery and a model for 3-dehydroshikimate recognition. Furthermore, we discuss the evolutionary and metabolic implications of the presence of two shikimate dehydrogenases in E. coli and other organisms. << Less
J. Biol. Chem. 278:19463-19472(2003) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Enzyme-substrate complexes of the quinate/shikimate dehydrogenase from Corynebacterium glutamicum enable new insights in substrate and cofactor binding, specificity, and discrimination.
Hoppner A., Schomburg D., Niefind K.
Quinate dehydrogenase (QDH) catalyzes the reversible oxidation of quinate to 3-dehydroquinate by nicotineamide adenine dinucleotide (NADH) and is involved in the catabolic quinate metabolism required for the degradation of lignin. The enzyme is a member of the family of shikimate/quinate dehydroge ... >> More
Quinate dehydrogenase (QDH) catalyzes the reversible oxidation of quinate to 3-dehydroquinate by nicotineamide adenine dinucleotide (NADH) and is involved in the catabolic quinate metabolism required for the degradation of lignin. The enzyme is a member of the family of shikimate/quinate dehydrogenases (SDH/QDH) occurring in bacteria and plants. We characterized the dual-substrate quinate/shikimate dehydrogenase (QSDH) from Corynebacterium glutamicum (CglQSDH) kinetically and revealed a clear substrate preference of CglQSDH for quinate compared with shikimate both at the pH optimum and in a physiological pH range, which is a remarkable contrast to closely related SDH/QDH enzymes. With respect to the cosubstrate, CglQSDH is strictly NAD(H) dependent. These substrate and cosubstrate profiles correlate well with the details of three atomic resolution crystal structures of CglQSDH in different functional states we report here: with bound NAD+ (binary complex) and as ternary complexes with NADH plus either shikimate or quinate. The CglQSDH-NADH-quinate structure is the first complex structure of any member of the SDH/QDH family with quinate. Based on this novel structural information and systematic sequence and structure comparisons with closely related enzymes, we can explain the strict NAD(H) dependency of CglQSDH as well as its discrimination between shikimate and quinate. << Less
Biol. Chem. 394:1505-1516(2013) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.