Enzymes
UniProtKB help_outline | 19 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline ent-copalyl diphosphate Identifier CHEBI:58553 Charge -3 Formula C20H33O7P2 InChIKeyhelp_outline JCAIWDXKLCEQEO-PGHZQYBFSA-K SMILEShelp_outline [C@@H]1(CC/C(/C)=C/COP(OP(=O)([O-])[O-])(=O)[O-])C(=C)CC[C@]2([C@@]1(C)CCCC2(C)C)[H] 2D coordinates Mol file for the small molecule Search links Involved in 16 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline ent-kaur-16-ene Identifier CHEBI:15415 (CAS: 562-28-7) help_outline Charge 0 Formula C20H32 InChIKeyhelp_outline ONVABDHFQKWOSV-HPUSYDDDSA-N SMILEShelp_outline [H][C@]12CC[C@@]34C[C@@H](CC[C@@]3([H])[C@]1(C)CCCC2(C)C)C(=C)C4 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline diphosphate Identifier CHEBI:33019 (Beilstein: 185088) help_outline Charge -3 Formula HO7P2 InChIKeyhelp_outline XPPKVPWEQAFLFU-UHFFFAOYSA-K SMILEShelp_outline OP([O-])(=O)OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,139 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22220 | RHEA:22221 | RHEA:22222 | RHEA:22223 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis.
Wildung M.R., Croteau R.B.
The committed step of taxol (paclitaxel) biosynthesis is catalyzed by taxa-4(5),11(12)-diene synthase, a diterpene cyclase responsible for transforming the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to the parent olefin with a taxane skeleton. To obtain the corresponding cDNA cl ... >> More
The committed step of taxol (paclitaxel) biosynthesis is catalyzed by taxa-4(5),11(12)-diene synthase, a diterpene cyclase responsible for transforming the ubiquitous isoprenoid intermediate geranylgeranyl diphosphate to the parent olefin with a taxane skeleton. To obtain the corresponding cDNA clone, a set of degenerate primers was constructed based on consensus sequences of related monoterpene, sesquiterpene, and diterpene cyclases. Two of these primers amplified a 83-base pair fragment that was cyclase-like in sequence and that was employed as a hybridization probe to screen a cDNA library constructed from poly(A)+ RNA extracted from Pacific yew (Taxus brevifolia) stems. Twelve independent clones with insert size in excess of 2 kilobase pairs were isolated and partially sequenced. One of these cDNA isolates was functionally expressed in Escherichia coli, yielding a protein that was catalytically active in converting geranylgeranyl diphosphate to a diterpene olefin that was confirmed to be taxa-4(5),11(12)-diene by combined capillary gas chromatography-mass spectrometry. The sequence specifies an open reading frame of 2586 nucleotides, and the complete deduced polypeptide, including a long presumptive plastidial targeting peptide, contains 862 amino acid residues and has a molecular weight of 98,303, compared with about 79,000 previously determined for the mature native enzyme. Sequence comparisons with monoterpene, sesquiterpene, and diterpene cyclases of plant origin indicate a significant degree of similarity between these enzymes; the taxadiene synthase most closely resembles (46% identity, 67% similarity) abietadiene synthase, a diterpene cyclase from grand fir. << Less
-
Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.).
Yamaguchi S., Saito T., Abe H., Yamane H., Murofushi N., Kamiya Y.
The first committed step in the formation of diterpenoids leading to gibberellin (GA) biosynthesis is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene. ent-Kaurene synthase A (KSA) catalyzes the conversion of GGDP to copalyl diphosphate (CDP), which is subsequently converted to e ... >> More
The first committed step in the formation of diterpenoids leading to gibberellin (GA) biosynthesis is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene. ent-Kaurene synthase A (KSA) catalyzes the conversion of GGDP to copalyl diphosphate (CDP), which is subsequently converted to ent-kaurene by ent-kaurene synthase B (KSB). A full-length KSB cDNA was isolated from developing cotyledons in immature seeds of pumpkin (Cucurbita maxima L.). Degenerate oligonucleotide primers were designed from the amino acid sequences obtained from the purified protein to amplify a cDNA fragment, which was used for library screening. The isolated full-length cDNA was expressed in Escherichia coli as a fusion protein, which demonstrated the KSB activity to cyclize [3H]CDP to [3H]ent-kaurene. The KSB transcript was most abundant in growing tissues, but was detected in every organ in pumpkin seedlings. The deduced amino acid sequence shares significant homology with other terpene cyclases, including the conserved DDXXD motif, a putative divalent metal ion-diphosphate complex binding site. A putative transit peptide sequence that may target the translated product into the plastids is present in the N-terminal region. << Less
-
Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus.
Heskes A.M., Sundram T.C.M., Boughton B.A., Jensen N.B., Hansen N.L., Crocoll C., Cozzi F., Rasmussen S., Hamberger B., Hamberger B., Staerk D., Moeller B.L., Pateraki I.
Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ... >> More
Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species. << Less
Plant J. 93:943-958(2018) [PubMed] [EuropePMC]
This publication is cited by 10 other entries.
-
Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase.
Toyomasu T., Kawaide H., Ishizaki A., Shinoda S., Otsuka M., Mitsuhashi W., Sassa T.
We report here the nucleotide sequence of a full-length cDNA encoding ent-kaurene synthase that was isolated by a reverse-transcription polymerase chain reaction from Gibberella fujikuroi (Gcps/ks). This cDNA encodes 952 amino acid residues with a relative molecular mass of 107 kDa. The sequence s ... >> More
We report here the nucleotide sequence of a full-length cDNA encoding ent-kaurene synthase that was isolated by a reverse-transcription polymerase chain reaction from Gibberella fujikuroi (Gcps/ks). This cDNA encodes 952 amino acid residues with a relative molecular mass of 107 kDa. The sequence similarity between Gcps/ks and ent-kaurene synthase of the gibberellin A1-producing fungus, Phaeosphaeria sp. L487, is very high, suggesting that Gcps/ks is also a bifunctional diterpene cyclase. Its recombinant protein expressed in Escherichia coli converted geranylgeranyl diphosphate to copalyl diphosphate and ent-kaurene. << Less
Biosci. Biotechnol. Biochem. 64:660-664(2000) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis.
Kawaide H., Imai R., Sassa T., Kamiya Y.
ent-Kaurene is the first cyclic diterpene intermediate of gibberellin biosynthesis in both plants and fungi. In plants, ent-kaurene is synthesized from geranylgeranyl diphosphate via copalyl diphosphate in a two-step cyclization catalyzed by copalyl diphosphate synthase and ent-kaurene synthase. A ... >> More
ent-Kaurene is the first cyclic diterpene intermediate of gibberellin biosynthesis in both plants and fungi. In plants, ent-kaurene is synthesized from geranylgeranyl diphosphate via copalyl diphosphate in a two-step cyclization catalyzed by copalyl diphosphate synthase and ent-kaurene synthase. A cell-free system of the fungus Phaeosphaeria sp. L487 converted labeled geranylgeranyl diphosphate to ent-kaurene. A cDNA fragment, which possibly encodes copalyl diphosphate synthase, was isolated by reverse transcription-polymerase chain reaction using degenerate primers based on the consensus motifs of plant enzymes. Translation of a full-length cDNA sequence isolated from the fungal cDNA library revealed an open reading frame for a 106-kDa polypeptide. The deduced amino acid sequence shared 24 and 21% identity with maize copalyl diphosphate synthase and pumpkin ent-kaurene synthase, respectively. A fusion protein produced by expression of the cDNA in Escherichia coli catalyzed the two-step cyclization of geranylgeranyl diphosphate to ent-kaurene. Amo-1618 completely inhibited the copalyl diphosphate synthase activity of the enzyme at 10(-6) M, whereas it did not inhibit the ent-kaurene synthase activity even at 10(-4) M. These results indicate that the fungus has a bifunctional diterpene cyclase that can convert geranylgeranyl diphosphate into ent-kaurene. They may be separate catalytic sites for the two cyclization reactions. << Less
J. Biol. Chem. 272:21706-21712(1997) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.