Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline a globoside Gb4Cer (d18:1(4E)) Identifier CHEBI:18259 (CAS: 11034-93-8) help_outline Charge 0 Formula C45H79N2O23R SMILEShelp_outline CCCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO[C@@H]1O[C@H](CO)[C@@H](O[C@@H]2O[C@H](CO)[C@H](O[C@H]3O[C@H](CO)[C@H](O)[C@H](O[C@@H]4O[C@H](CO)[C@H](O)[C@H](O)[C@H]4NC(C)=O)[C@H]3O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O)NC([*])=O 2D coordinates Mol file for the small molecule Search links Involved in 5 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP-N-acetyl-α-D-galactosamine Identifier CHEBI:67138 Charge -2 Formula C17H25N3O17P2 InChIKeyhelp_outline LFTYTUAZOPRMMI-NESSUJCYSA-L SMILEShelp_outline CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 42 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline a globoside Forssman (d18:1(4E)) Identifier CHEBI:18056 Charge 0 Formula C53H92N3O28R SMILEShelp_outline [C@@H]1([C@H](O[C@@H](O[C@@H]2[C@H]([C@H](O[C@H]3[C@H](O[C@@H](O[C@@H]4[C@H](O[C@@H](OC[C@@H]([C@@H](/C=C/CCCCCCCCCCCCC)O)NC(=O)*)[C@@H]([C@H]4O)O)CO)[C@@H]([C@H]3O)O)CO)O[C@@H]([C@@H]2O)CO)O)[C@@H]([C@H]1O[C@H]5[C@@H]([C@H]([C@@H](O)[C@H](O5)CO)O)NC(C)=O)NC(C)=O)CO)O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline UDP Identifier CHEBI:58223 Charge -3 Formula C9H11N2O12P2 InChIKeyhelp_outline XCCTYIAWTASOJW-XVFCMESISA-K SMILEShelp_outline O[C@@H]1[C@@H](COP([O-])(=O)OP([O-])([O-])=O)O[C@H]([C@@H]1O)n1ccc(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 576 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22164 | RHEA:22165 | RHEA:22166 | RHEA:22167 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Expression cloning of Forssman glycolipid synthetase: a novel member of the histo-blood group ABO gene family.
Haslam D.B., Baenziger J.U.
A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltran ... >> More
A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation. << Less
Proc. Natl. Acad. Sci. U.S.A. 93:10697-10702(1996) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Molecular modeling of glycosyltransferases involved in the biosynthesis of blood group A, blood group B, Forssman, and iGb3 antigens and their interaction with substrates.
Heissigerova H., Breton C., Moravcova J., Imberty A.
A terminal alpha1-3 linked Gal or GalNAc sugar residue is the common structure found in several oligosaccharide antigens, such as blood groups A and B, the xeno-antigen, the Forssman antigen, and the isogloboside 3 (iGb3) glycolipid. The enzymes involved in the addition of this residue display str ... >> More
A terminal alpha1-3 linked Gal or GalNAc sugar residue is the common structure found in several oligosaccharide antigens, such as blood groups A and B, the xeno-antigen, the Forssman antigen, and the isogloboside 3 (iGb3) glycolipid. The enzymes involved in the addition of this residue display strong amino acid sequence similarities, suggesting a common fold. From a recently solved crystal structure of the bovine alpha3-galactosyltransferase complexed with UDP, homology modeling methods were used to build the four other enzymes of this family in their locked conformation. Nucleotide-sugars, the Mn2+ ion, and oligosaccharide acceptors were docked in the models. Nine different amino acid regions are involved in the substrate binding sites. After geometry optimization of the complexes and analysis of the predicted structures, the basis of the specificities can be rationalized. In the nucleotide-sugar binding site, the specificity between Gal or GalNAc transferase activity is due to the relative size of two clue amino acids. In the acceptor site, the presence of up to three tryptophan residues define the complexity of the oligosaccharide that can be specifically recognized. The modeling study helps in rationalizing the crystallographic data obtained in this family and provides insights on the basis of substrate and donor recognition. << Less
Glycobiology 13:377-386(2003) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Biosynthesis of Forssman hapten from globoside by alpha-N-acetylgalactosaminyltransferase of guinea pig tissues.
Kijimoto S., Ishibashi T., Makita A.
Biochem Biophys Res Commun 56:177-184(1974) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.