Reaction participants Show >> << Hide
-
Name help_outline
a ubiquinone
Identifier
CHEBI:16389
(CAS: 1339-63-5)
help_outline
Charge
0
Formula
C9H10O4(C5H8)n
Search links
Involved in 49 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9565Polymer name: a ubiquinonePolymerization index help_outline nFormula C9H10O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline D-glucose Identifier CHEBI:4167 (Beilstein: 1281604; CAS: 2280-44-6) help_outline Charge 0 Formula C6H12O6 InChIKeyhelp_outline WQZGKKKJIJFFOK-GASJEMHNSA-N SMILEShelp_outline OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 161 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
-
Name help_outline
a ubiquinol
Identifier
CHEBI:17976
(CAS: 56275-39-9)
help_outline
Charge
0
Formula
C9H12O4(C5H8)n
Search links
Involved in 55 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:9566Polymer name: a ubiquinolPolymerization index help_outline nFormula C9H12O4(C5H8)nCharge (0)(0)nMol File for the polymer
-
- Name help_outline D-glucono-1,5-lactone Identifier CHEBI:16217 (Beilstein: 83286; CAS: 90-80-2) help_outline Charge 0 Formula C6H10O6 InChIKeyhelp_outline PHOQVHQSTUBQQK-SQOUGZDYSA-N SMILEShelp_outline OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 13 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22152 | RHEA:22153 | RHEA:22154 | RHEA:22155 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.
Cozier G.E., Salleh R.A., Anthony C.
The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalyti ... >> More
The requirements for substrate binding in the quinoprotein glucose dehydrogenase (GDH) in the membranes of Escherichia coli are described, together with the changes in activity in a site-directed mutant in which His262 has been altered to a tyrosine residue (H262Y-GDH). The differences in catalytic efficiency between substrates are mainly related to differences in their affinity for the enzyme. Remarkably, it appears that, if a hexose is able to bind in the active site, then it is also oxidized, whereas some pentoses are able to bind (and act as competitive inhibitors), but are not substrates. The activation energies for the oxidation of hexoses and pentoses are almost identical. In a previously published model of the enzyme, His262 is at the entrance to the active site and appears to be important in holding the prosthetic group pyrroloquinoline quinone (PQQ) in place, and it has been suggested that it might play a role in electron transfer from the reduced PQQ to the ubiquinone in the membrane. The H262Y-GDH has a greatly diminished catalytic efficiency for all substrates, which is mainly due to a marked decrease in their affinities for the enzyme, but the rate of electron transfer to oxygen is unaffected. During the processing of the PQQ into the apoenzyme to give active enzyme, its affinity is markedly dependent on the pH, four groups with pK values between pH7 and pH8 being involved. Identical results were obtained with H262Y-GDH, showing that His262 it is not directly involved in this process. << Less
-
Occurrence of a bound ubiquinone and its function in Escherichia coli membrane-bound quinoprotein glucose dehydrogenase.
Elias M.D., Nakamura S., Migita C.T., Miyoshi H., Toyama H., Matsushita K., Adachi O., Yamada M.
The membrane-bound pyrroloquinoline quinone (PQQ)-containing quinoprotein glucose dehydrogenase (mGDH) in Escherichia coli functions by catalyzing glucose oxidation in the periplasm and by transferring electrons directly to ubiquinone (UQ) in the respiratory chain. To clarify the intramolecular el ... >> More
The membrane-bound pyrroloquinoline quinone (PQQ)-containing quinoprotein glucose dehydrogenase (mGDH) in Escherichia coli functions by catalyzing glucose oxidation in the periplasm and by transferring electrons directly to ubiquinone (UQ) in the respiratory chain. To clarify the intramolecular electron transfer of mGDH, quantitation and identification of UQ were performed, indicating that purified mGDH contains a tightly bound UQ(8) in its molecule. A significant increase in the EPR signal was observed following glucose addition in mGDH reconstituted with PQQ and Mg(2+), suggesting that bound UQ(8) accepts a single electron from PQQH(2) to generate semiquinone radicals. No such increase in the EPR signal was observed in UQ(8)-free mGDH under the same conditions. Moreover, a UQ(2) reductase assay with a UQ-related inhibitor (C49) revealed different inhibition kinetics between the wild-type mGDH and UQ(8)-free mGDH. From these findings, we propose that the native mGDH bears two ubiquinone-binding sites, one (Q(I)) for bound UQ(8) in its molecule and the other (Q(II)) for UQ(8) in the ubiquinone pool, and that the bound UQ(8) in the Q(I) site acts as a single electron mediator in the intramolecular electron transfer in mGDH. << Less
-
Amino acid residues interacting with both the bound quinone and coenzyme, pyrroloquinoline quinone, in Escherichia coli membrane-bound glucose dehydrogenase.
Mustafa G., Ishikawa Y., Kobayashi K., Migita C.T., Elias M.D., Nakamura S., Tagawa S., Yamada M.
The Escherichia coli membrane-bound glucose dehydrogenase (mGDH) as the primary component of the respiratory chain possesses a tightly bound ubiquinone (UQ) flanking pyrroloquinoline quinone (PQQ) as a coenzyme. Several mutants for Asp-354, Asp-466, and Lys-493, located close to PQQ, that were con ... >> More
The Escherichia coli membrane-bound glucose dehydrogenase (mGDH) as the primary component of the respiratory chain possesses a tightly bound ubiquinone (UQ) flanking pyrroloquinoline quinone (PQQ) as a coenzyme. Several mutants for Asp-354, Asp-466, and Lys-493, located close to PQQ, that were constructed by site-specific mutagenesis were characterized by enzymatic, pulse radiolysis, and EPR analyses. These mutants retained almost no dehydrogenase activity or ability of PQQ reduction. CD and high pressure liquid chromatography analyses revealed that K493A, D466N, and D466E mutants showed no significant difference in molecular structure from that of the wild-type mGDH but showed remarkably reduced content of bound UQ. A radiolytically generated hydrated electron (e(aq)(-)) reacted with the bound UQ of the wild enzyme and K493R mutant to form a UQ neutral semiquinone with an absorption maximum at 420 nm. Subsequently, intramolecular electron transfer from the bound UQ semiquinone to PQQ occurred. In K493R, the rate of UQ to PQQ electron transfer is about 4-fold slower than that of the wild enzyme. With D354N and D466N mutants, on the other hand, transient species with an absorption maximum at 440 nm, a characteristic of the formation of a UQ anion radical, appeared in the reaction of e(aq)(-), although the subsequent intramolecular electron transfer was hardly affected. This indicates that D354N and D466N are prevented from protonation of the UQ semiquinone radical. Moreover, EPR spectra showed that mutations on Asp-466 or Lys-493 residues changed the semiquinone state of bound UQ. Taken together, we reported here for the first time the existence of a semiquinone radical of bound UQ in purified mGDH and the difference in protonation of ubisemiquinone radical because of mutations in two different amino acid residues, located around PQQ. Furthermore, based on the present results and the spatial arrangement around PQQ, Asp-466 and Lys-493 are suggested to interact both with the bound UQ and PQQ in mGDH. << Less
-
Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria.
Ameyama M., Matsushita K., Ohno Y., Shinagawa E., Adachi O.
-
C-terminal periplasmic domain of Escherichia coli quinoprotein glucose dehydrogenase transfers electrons to ubiquinone.
Elias M., Tanaka M., Sakai M., Toyama H., Matsushita K., Adachi O., Yamada M.
Membrane-bound quinoprotein glucose dehydrogenase (GDH) in Escherichia coli donates electrons directly to ubiquinone during the oxidation of d-glucose as a substrate, and these electrons are subsequently transferred to ubiquinol oxidase in the respiratory chain. To determine whether the specific u ... >> More
Membrane-bound quinoprotein glucose dehydrogenase (GDH) in Escherichia coli donates electrons directly to ubiquinone during the oxidation of d-glucose as a substrate, and these electrons are subsequently transferred to ubiquinol oxidase in the respiratory chain. To determine whether the specific ubiquinone-reacting site of GDH resides in the N-terminal transmembrane domain or in the large C-terminal periplasmic catalytic domain (cGDH), we constructed a fusion protein between the signal sequence of beta-lactamase and cGDH. This truncated GDH was found to complement a GDH gene-disrupted strain in vivo. The signal sequence of the fused protein was shown to be cleaved off, and the remaining cGDH was shown to be recovered in the membrane fraction, suggesting that cGDH has a membrane-interacting site that is responsible for binding to membrane, like peripheral proteins. Kinetic analysis and reconstitution experiments revealed that cGDH has ubiquinone reductase activity nearly equivalent to that of the wild-type GDH. Thus, it is likely that the C-terminal periplasmic domain of GDH possesses a ubiquinone-reacting site and transfers electrons directly to ubiquinone. << Less
-
The metal ion in the active site of the membrane glucose dehydrogenase of Escherichia coli.
James P.L., Anthony C.
All pyrroloquinoline quinone (PQQ)-containing dehydrogenases whose structures are known contain Ca(2+) bonded to the PQQ at the active site. However, membrane glucose dehydrogenase (GDH) requires reconstitution with PQQ and Mg(2+) ions (but not Ca(2+)) for activity. To address the question of whet ... >> More
All pyrroloquinoline quinone (PQQ)-containing dehydrogenases whose structures are known contain Ca(2+) bonded to the PQQ at the active site. However, membrane glucose dehydrogenase (GDH) requires reconstitution with PQQ and Mg(2+) ions (but not Ca(2+)) for activity. To address the question of whether the Mg(2+) replaces the usual active site Ca(2+) in this enzyme, mutant GDHs were produced in which residues proposed to be involved in binding metal ion were modified (D354N-GDH and N355D-GDH and D354N-GDH/N355D-GDH). The most remarkable observation was that reconstitution with PQQ of the mutant enzymes was not supported by Mg(2+) ions as in the wild-type GDH, but it could be supported by Ca(2+), Sr(2+) or Ba(2+) ions. This was competitively inhibited by Mg(2+). This result, together with studies on the kinetics of the modified enzymes have led to the conclusion that, although a Ca(2+) ion is able to form part of the active site of the genetically modified GDH, as in all other PQQ-containing quinoproteins, a Mg(2+) ion surprisingly replaces Ca(2+) in the active site of the wild-type GDH. << Less
Biochim Biophys Acta 1647:200-205(2003) [PubMed] [EuropePMC]
-
Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
Dewanti A.R., Duine J.A.
Membrane-integrated quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus was produced by heterologous expression of the gene for it in an Escherichia coli recombinant strain. The apoenzyme (lacking the cofactor pyrroloquinoline quinone, PQQ) was solubilized with Triton X-100 and pur ... >> More
Membrane-integrated quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus was produced by heterologous expression of the gene for it in an Escherichia coli recombinant strain. The apoenzyme (lacking the cofactor pyrroloquinoline quinone, PQQ) was solubilized with Triton X-100 and purified to homogeneity. Reconstitution of the apoenzyme to full activity in the assay was achieved with a stoichiometric amount of PQQ in the presence of Mg2+. Just as for other PQQ-containing dehydrogenases where Ca2+ fulfills this role, Mg2+ anchors PQQ to the mGDH protein and activates the bound cofactor. This occurs in a precise way since high anomer specificity was found for the enzyme toward the sugars tested. Although the steady-state-type kinetics were as expected for a dye-linked dehydrogenase (ping-pong) and the PQQ in it was present in oxidized form, addition of glucose to the holoenzyme resulted in a very slow but continuous production of gluconolactone; i.e., the reaction did not stop after one turnover, with O2 apparently acting as an (albeit poor) electron acceptor by reoxidizing PQQH2 in the enzyme. The surprisingly low reactivity with glucose, in the absence of dye, as compared to the activity observed in the steady-state assay appeared to be due to formation of an anomalous enzyme form, mGDH. Formation of normal holoenzyme, mGDH, reducing added glucose immediately to gluconolactone (in one turnover), was achieved by treating mGDH with sulfite, by reconstituting apoenzyme with PQQ in the presence of sulfite, or by applying assay conditions to mGDH (addition of PMS/DCPIP). As compared to other quinoprotein dehydrogenases, mGDH appears to be unique with respect to the mode of PQQ-binding, as expressed by the special conditions for reconstitution and the absorption spectra of the bound cofactor, and the reactivity of the reduced enzyme toward O2. The primary cause for this seems not to be related to a different preference for the activating bivalent metal ion but to the special way of binding of PQQ to mGDH. << Less
-
Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens.
Cozier G.E., Anthony C.
The structure of methanol dehydrogenase (MDH) at 0.194 nm (1.94 A) has been used to provide a model structure for part of a membrane quinoprotein glucose dehydrogenase (GDH). The basic superbarrel structure is retained, along with the tryptophan-docking motifs. The active-site regions are similar, ... >> More
The structure of methanol dehydrogenase (MDH) at 0.194 nm (1.94 A) has been used to provide a model structure for part of a membrane quinoprotein glucose dehydrogenase (GDH). The basic superbarrel structure is retained, along with the tryptophan-docking motifs. The active-site regions are similar, but there are important differences, the most important being that GDH lacks the novel disulphide ring structure formed from adjacent cysteines in MDH; in GDH the equivalent region is occupied by His-262. Because of the overall similarities in the active-site region, the mechanism of action of GDH is likely to be similar to that of MDH. The differences in co-ordination to the cation and bonding to the pyrrolo-quinoline quinone (PQQ) in the active site may explain the relative ease of dissociation of the prosthetic group from the holo-GDH. There are considerable differences in the external loops, particularly those involved in formation of the shallow funnel leading to the active site, the configuration of which influences substrate specificity. The proposed model is consistent in many respects with previous proposals for the active-site structure based on the effects of chemical modification on binding of PQQ and enzymic activity. << Less