Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline acetyl-CoA Identifier CHEBI:57288 (Beilstein: 8468140) help_outline Charge -4 Formula C23H34N7O17P3S InChIKeyhelp_outline ZSLZBFCDCINBPY-ZSJPKINUSA-J SMILEShelp_outline CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12 2D coordinates Mol file for the small molecule Search links Involved in 352 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline taxa-4(20),11-dien-5α-ol Identifier CHEBI:30038 (CAS: 178888-02-3) help_outline Charge 0 Formula C20H32O InChIKeyhelp_outline QHDGSWAXTYWVOP-ZNWBIBPKSA-N SMILEShelp_outline CC1=C2CC[C@]3(C)CC[C@H](O)C(=C)[C@H]3C[C@H](CC1)C2(C)C 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline taxa-4(20),11-dien-5α-yl acetate Identifier CHEBI:30042 (CAS: 214628-37-2) help_outline Charge 0 Formula C22H34O2 InChIKeyhelp_outline APIZAZFFQBVSJA-ZJDLJICXSA-N SMILEShelp_outline [H][C@]12CCC(C)=C(CC[C@]3(C)CC[C@H](OC(C)=O)C(=C)[C@@]3([H])C1)C2(C)C 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:22028 | RHEA:22029 | RHEA:22030 | RHEA:22031 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Molecular cloning of a taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli.
Walker K., Schoendorf A., Croteau R.B.
The taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase which catalyzes the third step of Taxol biosynthesis has been isolated from methyl jasmonate-induced Taxus cells, and partially purified and characterized (K. Walker, R. E. B. Ketchum, M. Hezari, D. Gatfield, M. Golenowski, A. Barthol, and ... >> More
The taxa-4(20),11(12)-dien-5alpha-ol-O-acetyl transferase which catalyzes the third step of Taxol biosynthesis has been isolated from methyl jasmonate-induced Taxus cells, and partially purified and characterized (K. Walker, R. E. B. Ketchum, M. Hezari, D. Gatfield, M. Golenowski, A. Barthol, and R. Croteau, Arch. Biochem. Biophys. 364, 273-279 1999). A revised purification method allowed internal amino acid microsequencing of the enzyme, from which primers were designed and employed to amplify a transacetylase gene-specific fragment. This radiolabeled, 900-bp amplicon was used as a hybridization probe to screen a cDNA library constructed from poly(A)(+) RNA isolated from induced Taxus cells, from which a full-length transacetylase sequence was obtained. Expression of this clone from pCWori(+) in Escherichia coli JM109 cells yielded the functional enzyme, as determined by radiochemical assay and combined capillary gas chromatographic-mass spectrometric verification of the acetylated product. The full-length DNA has an open-reading frame of 1317 nucleotides corresponding to a deduced amino acid sequence of 439 residues that exhibits high sequence identity to the proteolytic fragments of the native enzyme, which the recombinant transacetylase resembles in properties. Consistent with the size of the operationally soluble native enzyme, the DNA appears to encode a monomeric protein of molecular weight 49,079 that bears no N-terminal organellar targeting information. Sequence comparison of the taxadien-5alpha-ol-O-acetyl transferase with the few other known acyl transferases of plant origin indicates a significant degree of similarity between these enzymes (64-67%). The efficient conversion of taxadien-5alpha-yl acetate to further hydroxylated intermediates of the Taxol pathway confirms the significance of this acylation step and suggests this taxadienol transacetylase to be an important target for genetic manipulation to improve Taxol production. << Less
Arch. Biochem. Biophys. 374:371-380(2000) [PubMed] [EuropePMC]
-
Taxol biosynthetic genes.
Walker K., Croteau R.
The function and properties of heterologously expressed full-length cDNA clones, isolated from a Taxus cDNA library and specific to Taxol biosynthesis, are summarized. Recombinant enzymes are described that catalyze early steps of the pathway, including taxadiene synthase, taxadien-5alpha-ol-O-ace ... >> More
The function and properties of heterologously expressed full-length cDNA clones, isolated from a Taxus cDNA library and specific to Taxol biosynthesis, are summarized. Recombinant enzymes are described that catalyze early steps of the pathway, including taxadiene synthase, taxadien-5alpha-ol-O-acetyltransferase and taxadien-5alpha-yl acetate 10beta-hydroxylase, and that catalyze late steps, including 10-deacetylbaccatin III-10beta-O-acetyltransferase and taxane 2alpha-O-benzoyltransferase. The properties of Taxus geranylgeranyl diphosphate synthase are also described; although this synthase does not mediate a committed step of Taxol biosynthesis, it does provide the universal plastidial diterpenoid precursor, geranylgeranyl diphosphate, for initiating Taxol biosynthesis. << Less
-
Regioselectivity of taxoid-O-acetyltransferases: heterologous expression and characterization of a new taxadien-5alpha-ol-O-acetyltransferase.
Chau M., Walker K., Long R., Croteau R.
In addition to the anticancer drug Taxol, yew (Taxus) species produce a large variety of other taxane diterpenoids which differ mainly in the type of acyl and aroyl groups appended to the many hydroxyl functions on the taxane core; acetate esters are particularly common. Taxol bears an acetate at ... >> More
In addition to the anticancer drug Taxol, yew (Taxus) species produce a large variety of other taxane diterpenoids which differ mainly in the type of acyl and aroyl groups appended to the many hydroxyl functions on the taxane core; acetate esters are particularly common. Taxol bears an acetate at C10 and another at C4 thought to originate by intramolecular migration of a C5 acetate function in the process of oxetane ring formation, but many other naturally occurring taxoids bear acetate groups at C1, C2, C7, C9, and C13, in addition to C5 and C10. cDNAs encoding a taxoid 5alpha-O-acetyltransferase (taxadien-5alpha-ol as substrate) and a taxoid 10beta-O-acetyltransferase (10-deacetylbaccatin III as substrate) have been acquired from a recently isolated family of Taxus acyl/aroyltransferase clones. To explore the origins of other acetylated taxoids, the group of recombinant Taxus acyltransferases was investigated with a range of polyhydroxylated taxoids as substrates. From this survey, a new acetyltransferase clone (denoted TAX19) was identified that was capable of acetylating taxadien-5alpha-ol with activity comparable to that of the previously identified 5alpha-O-acetyltransferase (clone TAX1). However, when these two recombinant enzymes were presented with taxadien-triol and tetraol substrates, they exhibited different regiospecificities. The TAX1 enzyme preferentially acetylates the "northern" hemisphere hydroxyls at C9 and C10, whereas the TAX19 enzyme preferentially acetylates the "east-west" pole positions at C5 and C13. The TAX1 enzyme possesses the lowest KM value with taxadien-5alpha-ol (an early pathway metabolite) as substrate, with much higher KM values for the polyhydroxylated taxoid substrates, whereas the TAX19 enzyme possesses lower KM values (than the TAX1 transferase) for all taxoid substrates tested. These results suggest that both TAX1 and TAX19 acyltransferases may function at the early C5 acetylation step of taxoid metabolism, and that the TAX19 acyltransferase, because of its broader specificity for polyhydroxylated taxoids, may also function later in metabolism and be responsible for the production of many other acetylated taxoids. << Less