Reaction participants Show >> << Hide
- Name help_outline 2,5-diamino-6-hydroxy-4-(5-phosphoribosylamino)-pyrimidine Identifier CHEBI:58614 Charge -2 Formula C9H14N5O8P InChIKeyhelp_outline OCLCLRXKNJCOJD-UMMCILCDSA-L SMILEShelp_outline Nc1nc(O)c(N)c(N[C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)n1 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 5-amino-6-(5-phospho-D-ribosylamino)uracil Identifier CHEBI:58453 Charge -2 Formula C9H13N4O9P InChIKeyhelp_outline LZEXYCAGPMYXLX-UMMCILCDSA-L SMILEShelp_outline Nc1c(N[C@@H]2O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]2O)[nH]c(=O)[nH]c1=O 2D coordinates Mol file for the small molecule Search links Involved in 3 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NH4+ Identifier CHEBI:28938 (CAS: 14798-03-9) help_outline Charge 1 Formula H4N InChIKeyhelp_outline QGZKDVFQNNGYKY-UHFFFAOYSA-O SMILEShelp_outline [H][N+]([H])([H])[H] 2D coordinates Mol file for the small molecule Search links Involved in 529 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21868 | RHEA:21869 | RHEA:21870 | RHEA:21871 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
Kinetic and mechanistic analysis of the Escherichia coli ribD-encoded bifunctional deaminase-reductase involved in riboflavin biosynthesis.
Magalhaes M.L., Argyrou A., Cahill S.M., Blanchard J.S.
Riboflavin is biosynthesized by most microorganisms and plants, while mammals depend entirely on the absorption of this vitamin from the diet to meet their metabolic needs. Therefore, riboflavin biosynthesis appears to be an attractive target for drug design, since appropriate inhibitors of the pa ... >> More
Riboflavin is biosynthesized by most microorganisms and plants, while mammals depend entirely on the absorption of this vitamin from the diet to meet their metabolic needs. Therefore, riboflavin biosynthesis appears to be an attractive target for drug design, since appropriate inhibitors of the pathway would selectively target the microorganism. We have cloned and solubly expressed the bifunctional ribD gene from Escherichia coli, whose three-dimensional structure was recently determined. We have demonstrated that the rate of deamination (370 min (-1)) exceeds the rate of reduction (19 min (-1)), suggesting no channeling between the two active sites. The reductive ring opening reaction occurs via a hydride transfer from the C 4-pro-R hydrogen of NADPH to C'-1 of ribose and is the rate-limiting step in the overall reaction, exhibiting a primary kinetic isotope effect ( (D) V) of 2.2. We also show that the INH-NADP adduct, one of the active forms of the anti-TB drug isoniazid, inhibits the E. coli RibD. On the basis of the observed patterns of inhibition versus the two substrates, we propose that the RibD-catalyzed reduction step follows a kinetic scheme similar to that of its structural homologue, DHFR. << Less
Biochemistry 47:6499-6507(2008) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin.
Burrows R.B., Brown G.M.
Two enzymes have been partially purified from extracts of Escherchia coli B which together catalyze the conversion of the product of the action of GTP cyclohydrolase II, 2,5-diamino-6-oxy-4-(5'-phosphoribosylamine)pyrimidine, to 5-amino-2,6-dioxy-4-(5'-phosphoribitylamine)pyrimidine. These two com ... >> More
Two enzymes have been partially purified from extracts of Escherchia coli B which together catalyze the conversion of the product of the action of GTP cyclohydrolase II, 2,5-diamino-6-oxy-4-(5'-phosphoribosylamine)pyrimidine, to 5-amino-2,6-dioxy-4-(5'-phosphoribitylamine)pyrimidine. These two compounds are currently thought to be intermediates in the biosynthesis of riboflavin. The enzymatic conversion occurs in two steps. The product of the action of GTP cyclohydrolase II first undergoes hydrolytic deamination at carbon 2 of the ring, followed by reduction of the ribosylamino group to a ribitylamino group. The enzyme which catalyzes the first step, herein called the "deaminase," has been purified 200-fold. The activity was assayed by detecting the conversion of the product of the reaction catalyzed by GTP cyclohydrolase II to a compound which reacts with butanedione to form 6,7-dimethyllumazine. The enzyme has a molecular weight of approximately 80,000 and a pH optimum of 9.1. The dephosphorylated form of the substrate is not deaminated in the presence of the enzyme. The assay for the enzyme which catalyzes the second step, referred to here as the "reductase," involves the detection of the conversion of the product of the deaminase-catalyzed reaction to a compound which, after treatment with alkaline phosphatase, reacts with butanedione to form 6,7-dimethyl-8-ribityllumazine. The reductase has a molecular weight of approximately 40,000 and a pH optimum of 7.5. Like the deaminase, the reductase does not act on the dephosphorylated form of its substrate. Reduced nicotinamide adenine dinucleotide phosphate is required as a cofactor; reduced nicotinamide adenine dinucleotide can be used about 30% as well as the phosphate form. The activity of neither enzyme is inhibited by riboflavin, FMN, or flavine adenine dinucleotide. << Less
J Bacteriol 136:657-667(1978) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.