Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline (R)-10-hydroxyoctadecanoate Identifier CHEBI:15683 Charge -1 Formula C18H35O3 InChIKeyhelp_outline PAZZVPKITDJCPV-QGZVFWFLSA-M SMILEShelp_outline C(CCCCCCCC[C@@H](CCCCCCCC)O)([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline (9Z)-octadecenoate Identifier CHEBI:30823 (Beilstein: 1913148; CAS: 115-06-0) help_outline Charge -1 Formula C18H33O2 InChIKeyhelp_outline ZQPPMHVWECSIRJ-KTKRTIGZSA-M SMILEShelp_outline CCCCCCCC\C=C/CCCCCCCC([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 114 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (Beilstein: 3587155; CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,204 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21852 | RHEA:21853 | RHEA:21854 | RHEA:21855 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Related reactions help_outline
More general form(s) of this reaction
Publications
-
Stereospecific hydration of the delta-9 double bond of oleic acid.
Niehaus W.G. Jr., Torkelson A., Kisic A., Bednarczyk D.J., Schroepfer G.J. Jr.
-
Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond.
Bevers L.E., Pinkse M.W., Verhaert P.D., Hagen W.R.
The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2. ... >> More
The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2.1.53) from Elizabethkingia meningoseptica. << Less
-
Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus.
Joo Y.C., Jeong K.W., Yeom S.J., Kim Y.S., Kim Y., Oh D.K.
A putative fatty acid hydratase gene from Macrococcus caseolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was a 68 kDa dimer with a molecular mass of 136 kDa. The enzymatic products formed from fatty acid substrates by the putative enzyme were isolated with high purit ... >> More
A putative fatty acid hydratase gene from Macrococcus caseolyticus was cloned and expressed in Escherichia coli. The recombinant enzyme was a 68 kDa dimer with a molecular mass of 136 kDa. The enzymatic products formed from fatty acid substrates by the putative enzyme were isolated with high purity (>99%) by solvent fractional crystallization at low temperature. After the identification by GC-MS, the purified hydroxy fatty acids were used as standards to quantitatively determine specific activities and kinetic parameters for fatty acids as substrates. Among the fatty acids evaluated, specific activity and catalytic efficiency (k(cat)/K(m)) were highest for oleic acid, indicating that the putative fatty acid hydratase was an oleate hydratase. Hydration occurred only for cis-9-double and cis-12-double bonds of unsaturated fatty acids without any trans-configurations. The maximum activity for oleate hydration was observed at pH 6.5 and 25 °C with 2% (v/v) ethanol and 0.2 mM FAD. Without FAD, all catalytic activity was abolished. Thus, the oleate hydratase is an FAD-dependent enzyme. The residues G29, G31, S34, E50, and E56, which are conserved in the FAD-binding motif of fatty acid hydratases (GXGXXG((A/S))X((15-21))E((D))), were selected by alignment, and the spectral properties and kinetic parameters of their alanine-substituted variants were analyzed. Among the five variants, G29A, G31A, and E56A showed no interaction with FAD and exhibited no activity. These results indicate that G29, G31, and E56 are essential for FAD-binding. << Less