Enzymes
UniProtKB help_outline | 2 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline N-methyl-L-alanine Identifier CHEBI:58175 Charge 0 Formula C4H9NO2 InChIKeyhelp_outline GDFAOVXKHJXLEI-VKHMYHEASA-N SMILEShelp_outline C[NH2+][C@@H](C)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,294 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline methylamine Identifier CHEBI:59338 Charge 1 Formula CH6N InChIKeyhelp_outline BAVYZALUXZFZLV-UHFFFAOYSA-O SMILEShelp_outline C[NH3+] 2D coordinates Mol file for the small molecule Search links Involved in 28 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline pyruvate Identifier CHEBI:15361 (CAS: 57-60-3) help_outline Charge -1 Formula C3H3O3 InChIKeyhelp_outline LCTONWCANYUPML-UHFFFAOYSA-M SMILEShelp_outline CC(=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 215 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,288 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,521 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21768 | RHEA:21769 | RHEA:21770 | RHEA:21771 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent delta1-piperideine-2-carboxylate/delta1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-proline.
Muramatsu H., Mihara H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N.
A Pseudomonas putida ATCC12633 gene, dpkA, encoding a putative protein annotated as malate/L-lactate dehydrogenase in various sequence data bases was disrupted by homologous recombination. The resultant dpkA(-) mutant was deprived of the ability to use D-lysine and also D-proline as a sole carbon ... >> More
A Pseudomonas putida ATCC12633 gene, dpkA, encoding a putative protein annotated as malate/L-lactate dehydrogenase in various sequence data bases was disrupted by homologous recombination. The resultant dpkA(-) mutant was deprived of the ability to use D-lysine and also D-proline as a sole carbon source. The dpkA gene was cloned and overexpressed in Escherichia coli, and the gene product was characterized. The enzyme showed neither malate dehydrogenase nor lactate dehydrogenase activity but catalyzed the NADPH-dependent reduction of such cyclic imines as Delta(1)-piperideine-2-carboxylate and Delta(1)-pyrroline-2-carboxylate to form L-pipecolate and L-proline, respectively. NADH also served as a hydrogen donor for both substrates, although the reaction rates were less than 1% of those with NADPH. The reverse reactions were also catalyzed by the enzyme but at much lower rates. Thus, the enzyme has dual metabolic functions, and we named the enzyme Delta(1)-piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase, the first member of a novel subclass in a large family of NAD(P)-dependent oxidoreductases. << Less
J. Biol. Chem. 280:5329-5335(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily.
Mihara H., Muramatsu H., Kakutani R., Yasuda M., Ueda M., Kurihara T., Esaki N.
We found N-methyl-L-amino acid dehydrogenase activity in various bacterial strains, such as Pseudomonas putida and Bacillus alvei, and cloned the gene from P. putida ATCC12633 into Escherichia coli. The enzyme purified to homogeneity from recombinant E. coli catalyzed the NADPH-dependent formation ... >> More
We found N-methyl-L-amino acid dehydrogenase activity in various bacterial strains, such as Pseudomonas putida and Bacillus alvei, and cloned the gene from P. putida ATCC12633 into Escherichia coli. The enzyme purified to homogeneity from recombinant E. coli catalyzed the NADPH-dependent formation of N-alkyl-L-amino acids from the corresponding alpha-oxo acids (e.g. pyruvate, phenylpyruvate, and hydroxypyruvate) and alkylamines (e.g. methylamine, ethylamine, and propylamine). Ammonia was inert as a substrate, and the enzyme was clearly distinct from conventional NAD(P)-dependent amino acid dehydrogenases, such as alanine dehydrogenase (EC 1.4.1.1). NADPH was more than 300 times more efficient than NADH as a hydrogen donor in the enzymatic reductive amination. Primary structure analysis revealed that the enzyme belongs to a new NAD(P)-dependent oxidoreductase superfamily, the members of which show no sequence homology to conventional NAD(P)-dependent amino acid dehydrogenases and opine dehydrogenases. << Less
-
Purification and characterization of N-methylalanine dehydrogenase.
Lin M.C., Wagner C.
Cell free extracts of Pseudomonas MS previously have been shown to carry out the synthesis of a novel amino acid, N-methylalanine (Kung, H.F., and Wagner, C. (1970) Biochim. Biophys. Acta 201, 513-516). An enzyme has been isolated from this organism which is responsible for the synthesis of N-meth ... >> More
Cell free extracts of Pseudomonas MS previously have been shown to carry out the synthesis of a novel amino acid, N-methylalanine (Kung, H.F., and Wagner, C. (1970) Biochim. Biophys. Acta 201, 513-516). An enzyme has been isolated from this organism which is responsible for the synthesis of N-methylalanine. The stoichiometry of the reaction catalyzed by this enzyme leads to the following formulation: Methylamine + pyruvate + NADPH + H-+ yields N-methylalanine + NADP-+ + H2O. This enzyme has been physically separated from alanine dehydrogenase, which is also present in these extracts. This new enzyme has been named N-methylalanine dehydrogenase. It has been purified to near homogeneity as judged by disc gel electrophoresis. Gel filtration chromatography showed that N-methylalanine dehydrogenase has an apparent molecular weight of 77,000, while electrophoresis in sodium dodecyl sulfate gave rise to a single band with a molecular weight of approximately 36,500. The enzyme is optimally active in the pH range between 8.2 and 8.6. The apparent K-m values for pyruvate, NADPH, and methylamine, respectively, are 1-5 times 10 minus 2 M, 3-5 times 10 minus 5 M, and 7.5 times 10 minus 2 M. << Less
-
Crystal structures of Delta1-piperideine-2-carboxylate/Delta1-pyrroline-2-carboxylate reductase belonging to a new family of NAD(P)H-dependent oxidoreductases: conformational change, substrate recognition, and stereochemistry of the reaction.
Goto M., Muramatsu H., Mihara H., Kurihara T., Esaki N., Omi R., Miyahara I., Hirotsu K.
Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have dete ... >> More
Delta(1)-Piperideine-2-carboxylate/Delta(1)-pyrroline-2-carboxylate reductase from Pseudomonas syringae pv. tomato belongs to a novel sub-class in a large family of NAD(P)H-dependent oxidoreductases distinct from the conventional MDH/LDH superfamily characterized by the Rossmann fold. We have determined the structures of the following three forms of the enzyme: the unliganded form, the complex with NADPH, and the complex with NADPH and pyrrole-2-carboxylate at 1.55-, 1.8-, and 1.7-A resolutions, respectively. The enzyme exists as a dimer, and the subunit consists of three domains; domain I, domain II (NADPH binding domain), and domain III. The core of the NADPH binding domain consists of a seven-stranded predominantly antiparallel beta-sheet fold (which we named SESAS) that is characteristic of the new oxidoreductase family. The enzyme preference for NADPH over NADH is explained by the cofactor binding site architecture. A comparison of the overall structures revealed that the mobile domains I and III change their conformations to produce the catalytic form. This conformational change plays important roles in substrate recognition and the catalytic process. The active site structure of the catalytic form made it possible to identify the catalytic Asp:Ser:His triad and investigate the catalytic mechanism from a stereochemical point of view. << Less
J. Biol. Chem. 280:40875-40884(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.