Enzymes
UniProtKB help_outline | 4,926 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 5-methylsulfanyl-2,3-dioxopentyl phosphate Identifier CHEBI:58828 (Beilstein: 11409870) help_outline Charge -2 Formula C6H9O6PS InChIKeyhelp_outline HKEAOVFNWRDVAJ-UHFFFAOYSA-L SMILEShelp_outline CSCCC(=O)C(=O)COP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H2O Identifier CHEBI:15377 (CAS: 7732-18-5) help_outline Charge 0 Formula H2O InChIKeyhelp_outline XLYOFNOQVPJJNP-UHFFFAOYSA-N SMILEShelp_outline [H]O[H] 2D coordinates Mol file for the small molecule Search links Involved in 6,264 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline 1,2-dihydroxy-5-(methylsulfanyl)pent-1-en-3-one Identifier CHEBI:49252 Charge 0 Formula C6H10O3S InChIKeyhelp_outline CILXJJLQPTUUSS-XQRVVYSFSA-N SMILEShelp_outline CSCCC(=O)C(\O)=C\O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 1,002 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21700 | RHEA:21701 | RHEA:21702 | RHEA:21703 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
Reactome help_outline |
Publications
-
Crystal structure of human E1 enzyme and its complex with a substrate analog reveals the mechanism of its phosphatase/enolase activity.
Wang H., Pang H., Bartlam M., Rao Z.
Enolase-phosphatase E1 (MASA) is a bifunctional enzyme in the ubiquitous methionine salvage pathway that catalyzes the continuous reactions of 2,3-diketo-5-methylthio-1-phosphopentane to yield the aci-reductone metabolite using Mg2+ as cofactor. In this study, we have determined the crystal struct ... >> More
Enolase-phosphatase E1 (MASA) is a bifunctional enzyme in the ubiquitous methionine salvage pathway that catalyzes the continuous reactions of 2,3-diketo-5-methylthio-1-phosphopentane to yield the aci-reductone metabolite using Mg2+ as cofactor. In this study, we have determined the crystal structure of MASA and its complex with a substrate analog to 1.7A resolution by multi-wavelength anomalous diffraction and molecular replacement techniques, respectively. The structures support the proposed mechanism of phosphatase activity and further suggest the probable mechanism of enolization. We establish a model for substrate binding to describe in detail the enzymatic reaction and the formation of the transition state, which will provide insight into the reaction mechanisms of other enzymes in the same family. << Less
-
The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases.
Wray J.W., Abeles R.H.
The 5-methylthio-D-ribose moiety of 5'-(methylthio)-adenosine is converted to methionine in a wide variety of organisms. 1,2-Dihydroxy-3-keto-5-methylthiopentene anion (an aci-reductone) is an advanced intermediate in the methionine salvage pathway present in the Gram-negative bacterium Klebsiella ... >> More
The 5-methylthio-D-ribose moiety of 5'-(methylthio)-adenosine is converted to methionine in a wide variety of organisms. 1,2-Dihydroxy-3-keto-5-methylthiopentene anion (an aci-reductone) is an advanced intermediate in the methionine salvage pathway present in the Gram-negative bacterium Klebsiella pneumoniae and rat liver. This metabolite is oxidized spontaneously in air to formate and 2-keto-4-methylthiobutyric acid (the alpha-keto acid precursor of methionine). Previously, we had purified an enzyme (E2) from Klebsiella which catalyzes the oxidative degradation of the aci-reductone to formate, CO, and methylthiopropionic acid. To further characterize the reactions of the aci-reductone we used its desthio analog, 1-2-dihydroxy-3-ketohexene anion (III), which was described previously. This molecule undergoes the analogous enzymatic and non-enzymatic reactions of the natural substrate, namely the formation of formate, CO, and butyrate from III. Experiments with 18O2 show that E2 is a dioxygenase which incorporates one molecule of 18O into formate and butyric acid. No cofactor has been identified. We were unable to find an enzyme which catalyzes the conversion of 1,2-dihydroxy-3-keto-5-methylthiopentane to a keto acid precursor of methionine. The keto acid is probably produced non-enzymically in Klebsiella. We have, however, identified and purified an enzyme (E3) from rat liver, which catalyzes the formation of formate and 2-oxopentanoic acid from III. This enzyme has a monomeric molecular mass of 28,000 daltons, and no chromophoric cofactor has been identified. Experiments with 18O2 show that E3 is a dioxygenase which incorporates an 18O molecule into formate and the alpha-keto acid. In rat liver CO formation was not detected. << Less
J Biol Chem 270:3147-3153(1995) [PubMed] [EuropePMC]
This publication is cited by 3 other entries.
-
Purification and characterization of an enzyme involved in oxidative carbon-carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae.
Myers R.W., Wray J.W., Fish S., Abeles R.H.
The 5-methylthio-D-ribose moiety of 5'-(methylthio)-adenosine is converted to methionine in a wide variety of organisms. 2,3-Diketo-5-methylthio-1-phosphopentane is an advanced intermediate in the methionine recycling pathway present in the Gram-negative bacterium Klebsiella pneumoniae. This unusu ... >> More
The 5-methylthio-D-ribose moiety of 5'-(methylthio)-adenosine is converted to methionine in a wide variety of organisms. 2,3-Diketo-5-methylthio-1-phosphopentane is an advanced intermediate in the methionine recycling pathway present in the Gram-negative bacterium Klebsiella pneumoniae. This unusual metabolite is oxidatively cleaved to yield formate (from C-1), 2-keto-4-methylthiobutyrate (the transamination product of methionine), and 3-methylthiopropionate. To further characterize this oxidative conversion, the desthio analog of the naturally occurring diketone, namely 2,3-diketo-1-phosphohexane I, was synthesized. If the metabolism of I is analogous to that of 2,3-diketo-5-methylthio-1-phosphopentane it should be converted to formate, 2-ketopentanoate, and butyrate. An enzyme (E-1), which mediates the oxidative conversion of I to formate and 2-ketopentanoate, was isolated from extracts of K. pneumoniae. E-1 was purified 100-fold to homogeneity in 10% yield. The native enzyme is a monomeric protein of M(r) 27,000. The activity of E-1 requires magnesium ion as a cofactor. No other prosthetic groups were detected. Incubation of the enzyme with I, under anaerobic conditions, led to the discovery of two intermediates. These species have been identified by 1H and 13C NMR, UV-visible spectroscopy, and model chemistry studies as 2-hydroxy-3-keto-1-phospho-1-hexene II, generated by enolization of I; and 1,2-dihydroxy-3-keto-1-hexene III, generated by enzymatic dephosphorylation of II. Intermediates II and III are released from the active site of the enzyme; III accumulates under anaerobic conditions. Under aerobic conditions, III is non-enzymically oxidized to 2-ketopentanoate, formate, and other products. Compound II was also generated by heating I at pH 7.5 for 7 min. Action of alkaline phosphatase on II produces III. << Less
J. Biol. Chem. 268:24785-24791(1993) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
Comments
Multi-step reaction: RHEA:18769 and RHEA:14481