Enzymes
UniProtKB help_outline | 3 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline anthranilate Identifier CHEBI:16567 (Beilstein: 3904977) help_outline Charge -1 Formula C7H6NO2 InChIKeyhelp_outline RWZYAGGXGHYGMB-UHFFFAOYSA-M SMILEShelp_outline Nc1ccccc1C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 26 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline benzoyl-CoA Identifier CHEBI:57369 Charge -4 Formula C28H36N7O17P3S InChIKeyhelp_outline VEVJTUNLALKRNO-TYHXJLICSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 27 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CoA Identifier CHEBI:57287 (Beilstein: 11604429) help_outline Charge -4 Formula C21H32N7O16P3S InChIKeyhelp_outline RGJOEKWQDUBAIZ-IBOSZNHHSA-J SMILEShelp_outline CC(C)(COP([O-])(=O)OP([O-])(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP([O-])([O-])=O)n1cnc2c(N)ncnc12)[C@@H](O)C(=O)NCCC(=O)NCCS 2D coordinates Mol file for the small molecule Search links Involved in 1,500 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-benzoylanthranilate Identifier CHEBI:17331 (CAS: 579-93-1) help_outline Charge -1 Formula C14H10NO3 InChIKeyhelp_outline WXVLIIDDWFGYCV-UHFFFAOYSA-M SMILEShelp_outline [O-]C(=O)c1ccccc1NC(=O)c1ccccc1 2D coordinates Mol file for the small molecule Search links Involved in 1 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21600 | RHEA:21601 | RHEA:21602 | RHEA:21603 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L.
Yang Q., Reinhard K., Schiltz E., Matern U.
Benzoyl-CoA:anthranilate N-benzoyltransferase catalyzes the first committed reaction of phytoalexin biosynthesis in carnation (Dianthus caryophyllus L.), and the product N-benzoylanthranilate is the precursor of several sets of dianthramides. The transferase activity is constitutively expressed in ... >> More
Benzoyl-CoA:anthranilate N-benzoyltransferase catalyzes the first committed reaction of phytoalexin biosynthesis in carnation (Dianthus caryophyllus L.), and the product N-benzoylanthranilate is the precursor of several sets of dianthramides. The transferase activity is constitutively expressed in suspension-cultured carnation cells and can be rapidly induced by the addition of yeast extract. The enzyme was purified to homogeneity from yeast-induced carnation cells and shown to consist of a single polypeptide chain of 53 kDa. Roughly 20% of the sequence was identified by micro-sequencing of tryptic peptides, and some of these sequences differed in a few amino acid residues only suggesting the presence of isoenzymes. A specific 0.8 kb cDNA probe was generated by RT-PCR, employing degenerated oligonucleotide primers complementary to two of the tryptic peptides and using poly(A)+ RNA from elicited carnation cells. Five distinct benzoyltransferase clones were isolated from a cDNA library, and three cDNAs, pchcbt1-3, were sequenced and shown to encode full-size N-benzoyltransferases. The translated peptide sequences revealed more than 95% identity among these three clones. The additional two clones harbored insert sequences mostly homologous with pchcbt 1 but differing in the 3'-flanking regions due to variable usage of poly(A) addition sites. The identity of the clones was confirmed by matching the translated polypeptides with the tryptic enzyme sequences as well as by the activity of the benzoyltransferase expressed in Escherichia coli. Therefore, carnation encodes a small family of anthranilate N-benzoyltransferase genes. In vitro, the benzoyltransferases exhibited narrow substrate specificity for anthranilate but accepted a variety of aromatic acyl-CoAs. Catalytic rates with cinnamoyl- or 4-coumaroyl-CoA exceeded those observed with benzoyl-CoA, although the corresponding dianthramides did not accumulate in vivo. Thus the cDNAs described represent also the first hydroxycinnamoyl-transferases cloned from plants, which classifies the enzymes as hydroxycinnamoyl/benzoyltransferases. << Less
-
The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA:anthranilate N-benzoyltransferase activity.
Reinhard K., Matern U.
It has been shown that cell cultures of Dianthus caryophyllus L. c.v. Eleganz accumulate N-benzoyl-4-methoxyanthranilic acid, previously identified as the phytoalexin methoxydianthramide B, in response to treatment either with a crude elicitor isolated from the cell walls of Phytophthora megasperm ... >> More
It has been shown that cell cultures of Dianthus caryophyllus L. c.v. Eleganz accumulate N-benzoyl-4-methoxyanthranilic acid, previously identified as the phytoalexin methoxydianthramide B, in response to treatment either with a crude elicitor isolated from the cell walls of Phytophthora megasperma f.sp. glycinea or with a commercial yeast extract. Cell-free extracts from the induced cells efficiently catalyzed the N-benzoylation of anthranilate in the presence of benzoyl-CoA. The partially purified transferase was shown to be specific for anthranilate with almost no activity toward 4-hydroxyanthranilate, whereas acyl donors other than benzoyl-CoA such as salicyloyl-, cinnamoyl-, or 4-coumaroyl-CoA were also accepted. Elicitor treatment of the cells additionally induced an S-adenosyl-L-methionine:N-benzoyl-4-hydroxyanthranilate 4-O-methyltransferase activity. We propose, therefore, that methoxydianthramide B is derived from N-benzoylanthranilic acid via N-benzoyl-4-hydroxyanthranilic acid. Dark-grown cells contained little N-benzoyltransferase activity (approx 8 mu kat/kg), which increased roughly ninefold within 6 h following the addition of the elicitor. In addition, phenylalanine ammonia-lyase activity of the cells increased about twofold under these conditions to a maximum (approx 40 mu kat/kg) at 5 h. The rapid induction of both enzyme activities suggests that the shikimate pathway is of crucial importance in the disease resistance response of carnation cells. << Less
Arch Biochem Biophys 275:295-301(1989) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.