Reaction participants Show >> << Hide
- Name help_outline N-acetyl-L-glutamate 5-semialdehyde Identifier CHEBI:29123 Charge -1 Formula C7H10NO4 InChIKeyhelp_outline BCPSFKBPHHBDAI-LURJTMIESA-M SMILEShelp_outline CC(=O)N[C@@H](CCC=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 4 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADP+ Identifier CHEBI:58349 Charge -3 Formula C21H25N7O17P3 InChIKeyhelp_outline XJLXINKUBYWONI-NNYOXOHSSA-K SMILEShelp_outline NC(=O)c1ccc[n+](c1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,285 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline phosphate Identifier CHEBI:43474 Charge -2 Formula HO4P InChIKeyhelp_outline NBIIXXVUZAFLBC-UHFFFAOYSA-L SMILEShelp_outline OP([O-])([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 992 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline N-acetyl-L-glutamyl 5-phosphate Identifier CHEBI:57936 Charge -3 Formula C7H9NO8P InChIKeyhelp_outline FCVIHFVSXHOPSW-YFKPBYRVSA-K SMILEShelp_outline CC(=O)N[C@@H](CCC(=O)OP([O-])([O-])=O)C([O-])=O 2D coordinates Mol file for the small molecule Search links Involved in 2 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline NADPH Identifier CHEBI:57783 (Beilstein: 10411862) help_outline Charge -4 Formula C21H26N7O17P3 InChIKeyhelp_outline ACFIXJIJDZMPPO-NNYOXOHSSA-J SMILEShelp_outline NC(=O)C1=CN(C=CC1)[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@H](OP([O-])([O-])=O)[C@@H]2O)n2cnc3c(N)ncnc23)[C@@H](O)[C@H]1O 2D coordinates Mol file for the small molecule Search links Involved in 1,279 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21588 | RHEA:21589 | RHEA:21590 | RHEA:21591 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline | ||||
EcoCyc help_outline |
Publications
-
N-Acetyl-gamma-Ilutamokinase and N-acetylglutamic gamma-semialdehyde dehydrogenase: repressible enzymes of arginine synthesis in Escherichia coli.
Baich A., Vogel H.J.
Biochem. Biophys. Res. Commun. 7:491-496(1962) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
Coordination of enzyme synthesis in the arginine pathway of Escherichia coli K-12.
Glansdorf N., Sand G.
-
Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+).
Cherney L.T., Cherney M.M., Garen C.R., Niu C., Moradian F., James M.N.
The enzyme N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductive dephosphorylation of N-acetyl-gamma-glutamyl-phosphate to N-acetylglutamate-gamma-semialdehyde. This reaction is part of the arginine biosynthetic pat ... >> More
The enzyme N-acetyl-gamma-glutamyl-phosphate reductase (AGPR) catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductive dephosphorylation of N-acetyl-gamma-glutamyl-phosphate to N-acetylglutamate-gamma-semialdehyde. This reaction is part of the arginine biosynthetic pathway that is essential for some microorganisms and plants, in particular, for Mycobacterium tuberculosis (Mtb). The structures of apo MtbAGPR in the space groups P2(1)2(1)2(1) and C2 and the structure of MtbAGPR bound to the cofactor NADP(+) have been solved and analyzed. Each MtbAGPR subunit consists of alpha/beta and alpha+beta domains; NADP(+) is bound in the cleft between them. The hydrogen bonds and hydrophobic contacts between the enzyme and cofactor have been examined. Comparison of the apo and the bound enzyme structures has revealed a conformational change in MtbAGPR upon NADP(+) binding. Namely, a loop (Leu88 to His92) moves more than 5 A to confine sterically the cofactor's adenine moiety in a hydrophobic pocket. To identify the catalytically important residues in MtbAGPR, a docking of the substrate to the enzyme has been performed using the present structure of the MtbAGPR/NADP(+) complex. It reveals that residues His217 and His219 could form hydrogen bonds with the docked substrate. In addition, an ion pair could form between the substrate phosphate group and the guanidinium group of Arg114. These interactions optimally place and orient the substrate for subsequent nucleophilic attack by Cys158 on the substrate gamma-carboxyl group. His219 is the most probable general base to accept a proton from Cys158 and an adjacent ion pair interaction with the side-chain carboxyl group of Glu222 could help to stabilize the resulting positive charge on His219. For this catalytic triad to function efficiently it requires a small conformational change of the order of 1 A in the loop containing His217 and His219; this could easily result from the substrate binding. << Less