Enzymes
UniProtKB help_outline | 5 proteins |
Enzyme class help_outline |
|
GO Molecular Function help_outline |
|
Reaction participants Show >> << Hide
- Name help_outline 2,3-dihydroxybenzoate Identifier CHEBI:36654 (Beilstein: 3666805) help_outline Charge -1 Formula C7H5O4 InChIKeyhelp_outline GLDQAMYCGOIJDV-UHFFFAOYSA-M SMILEShelp_outline Oc1cccc(C([O-])=O)c1O 2D coordinates Mol file for the small molecule Search links Involved in 11 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,431 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline catechol Identifier CHEBI:18135 (Beilstein: 471401; CAS: 12385-08-9,120-80-9) help_outline Charge 0 Formula C6H6O2 InChIKeyhelp_outline YCIMNLLNPGFGHC-UHFFFAOYSA-N SMILEShelp_outline Oc1ccccc1O 2D coordinates Mol file for the small molecule Search links Involved in 25 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
- Name help_outline CO2 Identifier CHEBI:16526 (Beilstein: 1900390; CAS: 124-38-9) help_outline Charge 0 Formula CO2 InChIKeyhelp_outline CURLTUGMZLYLDI-UHFFFAOYSA-N SMILEShelp_outline O=C=O 2D coordinates Mol file for the small molecule Search links Involved in 997 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:21492 | RHEA:21493 | RHEA:21494 | RHEA:21495 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
Identification of the active-site peptide of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus oryzae.
Santha R., Rao N.A., Vaidyanathan C.S.
The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction ... >> More
The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD+, PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M-1 min-1. A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M-1 min-1. Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402. << Less
Biochim. Biophys. Acta 1293:191-200(1996) [PubMed] [EuropePMC]
-
2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger. A novel decarboxylase.
Santha R., Savithri H.S., Rao N.A., Vaidyanathan C.S.
2,3-Dihydroxybenzoic acid decarboxylase, the last enzyme in the fungal metabolism of indole to catechol, catalyzes the non-oxidative decarboxylation of 2,3-dihydroxybenzoic acid to catechol. Unlike most other decarboxylases, this enzyme does not require a cofactor, underlining the importance of ac ... >> More
2,3-Dihydroxybenzoic acid decarboxylase, the last enzyme in the fungal metabolism of indole to catechol, catalyzes the non-oxidative decarboxylation of 2,3-dihydroxybenzoic acid to catechol. Unlike most other decarboxylases, this enzyme does not require a cofactor, underlining the importance of active-site residues in the reaction mechanism. Earlier studies from this laboratory [Kamath, A. V., Appaji Rao, N. & Vaidyanathan, C. S. (1989) Biochem. Biophys. Res. Commun. 165, 20-26], have shown that the sulfhydryl agent N-ethylmaleimide (MalNEt) inactivated the enzyme by modifying a single class of cysteine residues and that this inactivation was prevented in the presence of salicylate, a substrate analogue. In the present study, this essential cysteine residue has been identified by specific labelling with [14C]-MalNEt using the differential labelling technique. The stoichiometry of incorporation of [14C]MalNEt was approximately one/subunit of the homotetrameric protein. The peptide bearing this reactive cysteine residue was isolated by tryptic digestion of the differentially labelled enzyme and subsequent reverse-phase chromatography of the peptide mixture. The sequence of the major radioactive peptide that was identified to be the active-site peptide, was LLGLAETCK. A search for sequences similar to this active-site peptide indicated that this sequence was probably unique to the decarboxylase under study. A partial primary structure map constructed from the sequences of peptides derived from enzymic cleavage of the protein using endoproteinase Glu-C and trypsin did not share any significant sequence similarity with sequences reported in the database, again suggesting the uniqueness of the enzyme. This is the first report on the active-site peptide and the partial primary structure of a non-oxidative decarboxylase catalyzing the removal of a carboxyl group from an aromatic nucleus. << Less
-
O-pyrocatechiuc acid carboxy-lyase from Aspergillus niger.
Rao P.V., Moore K., Towers G.H.